SEGUIMIENTO DE LAS COLONIAS REPRODUCTORAS DE PAÍÑO EUROPEO (*Hydrobates pelagicus melitensis*) EN LA ISLA DE BENIDORM (ZEPA E-121) P.N. SERRA GELADA

INFORME DE ACTIVIDADES Y RESULTADOS OBTENIDOS EN 2023.

Ana Sanz Aguilar, Enrique Marco, Alejandro Izquierdo, Andreu Rotger Vallespir, Carles Grau, Juan José Mascarell, Daniel Gilabert, Joan Segovia, José Santamaría.

INDICE

<u>1.</u>	EL PAÍÑO EUROPEO
<u>2.</u>	MARCO DE ESTUDIO7
<u>3.</u>	METODOLOGÍA APLICADA8
<u>4.</u>	ANILLAMIENTOS Y RECAPTURAS EN 202314
<u>5.</u>	<u>RECLUTAS15</u>
<u>6.</u>	DEPREDACIÓN POR GAVIOTAS PATIAMARILLAS17
<u>7.</u>	FECHAS DE PUESTA
<u>8.</u>	OCUPACIÓN DE CAJAS NIDO
<u>9.</u>	PARÁMETROS REPRODUCTORES
<u>10.</u>	SUPERVIVENCIA
<u>11.</u>	SEGUIMIENTO EN MITJANA
<u>12.</u>	RECUPERACIÓN DE JÓVENES DESORIENTADOS35
<u>13.</u>	PUBLICACIONES CIENTÍFICAS (1989-2023)
<u>14.</u>	CONTRIBUCIONES A CONGRESOS44
<u>15.</u>	BIBLIOGRAFÍA
<u>16.</u>	AGRADECIMIENTOS

1. El paíño europeo (Hydrobates pelagicus)

Identificación

Es la más pequeña de las aves marinas europeas. Tiene un tamaño medio de 14-18 cm y un peso medio de 28 gramos. Su plumaje es negro con una mancha blanca en el obispillo y franjas blancas en la cara inferior de las alas. Sus ojos, pico y patas son oscuros. Destacan sus grandes narinas. Ambos sexos son muy poco dimórficos aunque las hembras presentan un tamaño ligeramente superior. La subespecie atlántica es de menor tamaño que la mediterránea. Vuelan muy próximos a la superficie del mar con planeos y rápidos aleteos. La especie presenta un fuerte olor.

Grupo de Ecología y Demografía Animal

En el período reproductivo ambos sexos emiten múltiples y constantes sonidos. Existen diferencias en las vocalizaciones de la subespecie atlántica y mediterránea.

Foto 1. Paíño europeo, Hydrobates pelagicus melitensis

Estatus de conservación y amenazas

Categoría global IUCN (2012): Preocupación Menor LC.

Categoría IUCN para España (2004): Vulnerable VU.

Catálogo Nacional de Especies Amenazadas: "De interés especial".

Libro Rojo España: "En Peligro"

Comunidad Valenciana: Vulnerable (Decreto 32/2004, 27 de febrero de 2004)

Las principales amenazas de la especie engloban la modificación/destrucción de sus hábitats, la introducción de especies exóticas, los depredadores, la contaminación y el cambio climático. Las molestias y parásitos pueden afectar negativamente a algunas de sus poblaciones.

Distribución

La subespecie *pelagicus* cría principalmente en islotes del cantábrico y Canarias. En invierno la subespecie atlántica se desplaza a la zona sur del continente africano. La subespecie *melitensis* con colonias de cría en islotes del levante peninsular y las islas Baleares podría ser residente en el mar mediterráneo.

Hábitat

Es una especie pelágica que sólo visita tierra durante la época reproductora. La mayoría de las colonias de cría se localizan en islas e islotes libres de ratas. Sus nidos se encuentran en zonas oscuras y generalmente poco accesibles: grietas, fisuras y cavidades. Durante la época reproductora las principales agregaciones en el mar se localizan en zonas de borde de la plataforma continental.

Movimientos

Los individuos jóvenes prospectan diferentes colonias de cría antes de comenzar a reproducirse. Son capaces de alimentarse a más de 300 km de la colonia. En el caso de paíños reproductores en Benidorm, pasan el invierno en el océano atlántico.

Grupo de Ecología y Demografía Animal

Ecología trófica

Su dieta es variada e incluye fundamentalmente zooplancton y pequeños peces o cefalópodos, que son capturados picoteando la superficie del mar.

Biología de la reproducción

En febrero-marzo comienzan a visitar las colonias. Desde finales de abril hasta el mes de agosto se producen las puestas, concentrándose la mayoría de las puestas en mayo y junio. Ponen un único huevo de grandes dimensiones en relación con su tamaño corporal que será incubado por ambos sexos durante 40 días. El pollo es cebado por las noches por ambos progenitores y abandonará la colonia a los 60-70 días de edad. En general comienzan a reproducirse a partir de su tercer año de vida. Presenta una alta supervivencia adulta con valores que normalmente oscilan entre el 80-90% anual, pero pueden verse afectados por depredadores y/o situaciones ambientales adversas. A nivel individual, factores como la edad, experiencia reproductora y calidad del individuo influyen en su éxito reproductor y supervivencia.

Interacciones con otras especies

Como depredadores del paíño destacan los mamíferos introducidos en islas, la gaviota patiamarilla (Foto 2) y algunas especies de rapaces. Presenta diferentes tipos de parásitos: ácaros, piojos, pulgas y garrapatas blandas. En ocasiones, otras especies de aves marinas pueden desplazarlos de sus lugares de nidificación.

Foto 2. Egagrópila de gaviota patiamarilla con restos de un paíño europeo depredado.

Patrón social y comportamiento

Generalmente se reproduce en colonias y en tierra presenta una actividad estrictamente nocturna. Es una especie monógama con gran fidelidad a su pareja y lugar de nidificación. Presenta un gran olfato que le permite el reconocimiento de otros individuos.

Para una información detallada sobre la especie consultar: <u>http://www.vertebradosibericos.org/aves/hydpel.html</u>

CSIC

Las Islotes de Benidorm (Alicante), situados en la costa oeste del mar Mediterráneo (38º 30'N, 0º 08'E), son una zona de especial protección para las aves (ZEPA) y de conservación para el paíño europeo. La isla de Benidorm tiene una superficie de 6 hectáreas y se sitúa a 3,6 kilómetros de Benidorm, uno de los principales destinos turísticos europeos. El paíño europeo se distribuye por toda la isla, pero se concentra especialmente en 2 cuevas dónde anida en grietas, bajo derrubios de rocas y en cajas-nido artificiales. La población reproductora de paíño europeo presente en la isla se ha estimado tradicionalmente entorno a las 400 parejas (Mínguez 1994), por lo que representa una de sus mayores poblaciones mediterráneas. Además, la isla de Benidorm tiene la particularidad de que las 2 colonias de paíño ubicadas en 2 cuevas pueden ser monitorizadas de forma relativamente sencilla, puesto que en una gran cantidad de nidos las aves presentes pueden ser capturadas a mano. Este es un hecho poco corriente en gran parte de las colonias de esta especie ya que en su gran mayoría anidan en lugares de muy difícil acceso y el único método de captura viable es el uso de redes. Las colonias de cría de la isla de Benidorm representan una oportunidad única para el seguimiento de la especie a largo plazo. La captura-recaptura de individuos reproductores y pollos posibilita la estimación de parámetros demográficos clave como la supervivencia, el reclutamiento o el éxito reproductor (Lebreton *et al.* 1992). Además, el seguimiento de nidos posibilita la obtención de estimas anuales de densidad relativa y productividad de las colonias. En las 2 colonias de paíño europeo se realiza un monitoreo a largo plazo desde 1993. El seguimiento a largo plazo de las colonias ha permitido avanzar en el conocimiento de los rasgos de vida de la especie, la dinámica local de sus poblaciones y detectar problemas de conservación (Oro et al. 2005). Uno de los principales problemas para la especie en Benidorm es la depredación que las gaviotas patiamarillas (Larus michahellis) ejercen sobre el paíño (Oro *et al.* 2005). Para solventar el problema, el año 2004 se comenzó con un programa de descaste selectivo de parejas de gaviota patiamarilla predadoras de paíño, cuya eficacia ha podido ser evaluada posteriormente (ver sección "depredación por las gaviotas patiamarillas").

3. Metodología aplicada

El seguimiento demográfico del paíño en la isla de Benidorm comenzó el año 1993. El año 2008 el protocolo de campo de seguimiento de las colonias reproductoras se modificó ligeramente con el fin de mantener una muestra representativa de nidos prospectados, reduciendo la carga de trabajo y eliminando del seguimiento aquellos nidos considerados confusos. Con respecto al protocolo seguido hasta la 2008, se eliminaron del seguimiento aquellos nidos en los que sus ocupantes no pueden ser capturados.

Grupo de Ecología y Demografía Animal

Las actividades realizadas para el seguimiento de las colonias fueron (Tabla 1):

- Recolección de datos de nidificación, éxito de eclosión, emplumamiento y reproductor. (1).
- Toma de datos individuales: anillamiento y recaptura de adultos reproductores (2).
- Toma de datos individuales: anillamiento de pollos (3).
- Seguimiento de las tasas de depredación de la gaviota patiamarilla sobre el paíño (4).

Recolección de datos de nidificación, éxito de eclosión, emplumamiento y reproductor.

Durante el presente año se revisaron los nidos de paíño que constan en el cuaderno de campo para su seguimiento permanente en la cueva grande o cueva de la *"Fenolla"* y la cueva pequeña o de *"Bombo"*, se revisaron cada 7 días y se anotó su contenido en el cuaderno de campo de la siguiente forma:

- Vacío (x)
- Pareja sin incubar (2A)
- Adulto sin incubar (A)
- Huevo sólo (H, además se indicó si se encontraba abandonado o parecía de la temporada anterior)

- Adulto marcado con typex incubando (Δ)
- Adulto empollando (se añadirá un punto en el interior del cuadrado)
- Adulto marcado con typex empollando (se añadirá un punto en el interior del triángulo)
- Pollo (■)
- Muerto (se añadirá el sufijo RIP al símbolo correspondiente)

Se marcaron los nuevos nidos en los que existió puesta y al menos uno de los adultos reproductores que lo ocupaban fue capturado (se trata de nidos que se llegaba a ellos con la mano).

La productividad de las colonias se estimó al final de la campaña. Para estimar el éxito de eclosión, emplumamiento y reproductor se utilizó el método Mayfield 40% (Mayfield 1961, Mayfield 1975, Johnson 1979, Hensler & Nichols 1981). El periodo medio de incubación se consideró 40 días (Davis 1957, Mínguez 1998) y el periodo medio de empollamiento, tiempo que permanece uno de los progenitores sobre el pollo tras la eclosión del huevo, 7 días (Mínguez & Oro 2003). Las estimas relativas de éxito reproductor utilizadas fueron:

- El éxito de eclosión (hatching success) representa el número de pollos que nacen frente al número de puestas realizadas expresado en tanto por uno.
- El éxito de emplumamiento (fledgling success) representa el número de pollos que completan su emplumamiento frente al número de pollos que nacen expresado en tanto por uno. Se consideró que un pollo había completado su emplumamiento si sobrevivió, al menos, 40 días (Davis 1957, Mínguez 1998). A esta edad los pollos se desplazan del nido habitualmente y es más difícil su localización, además de presentar mayor supervivencia que durante sus primeros días de vida (Mínguez & Oro 2003).

El *éxito reproductor* (breeding success) representa el número de pollos que completan su emplumamiento frente al número de puestas realizadas expresado en tanto por uno.

Grupo de Ecología y Demografía Animal

Para poder determinar las fechas de puesta con precisión es necesario un seguimiento bastante continuo durante todo el periodo de puesta, por lo que la base datos en este sentido aparece incompleta.

Toma de datos individuales: anillamiento y recaptura de adultos reproductores y pollos.

Las aves adultas se capturaron una sola vez durante la temporada de cría, al final del periodo de incubación o durante el periodo de empollamiento, para evitar molestias y deserciones (Blackmer *et al.* 2004). La captura se realizó durante el día, a mano, sobre los individuos que se encontraban en el nido. El primer miembro de cada pareja capturado en cada nido se marcó con pintura blanca (typex) en cabeza y cola para evitar volver a ser capturado en posteriores visitas. Las aves que abandonaron la incubación del huevo durante las primeras semanas de incubación no pudieron ser capturadas. En algunos casos, únicamente se pudo capturar uno de los miembros de la pareja, puesto que las visitas a la colonia coincidieron con sus turnos de incubación. Los pollos se capturaron a partir de los 30 días de edad.

En base a estudios previos que indicaron la escasa utilidad de la toma de medidas biométricas para determinar el sexo en esta especie, se decidió no tomar medidas a los ejemplares capturados. De esta forma se minimizó el tiempo de manipulación de las aves.

arc natural de la serra gelada

Seguimiento de las tasas de depredación de la gaviota patiamarilla sobre el paíño europeo.

La gaviota patiamarilla cría en toda la isla, los nidos se concentran principalmente en las laderas con menor pendiente pero unas cuantas parejas nidifican en los acantilados próximos a las colonias de paíño e incluso en el interior de las cuevas. Su población reproductora mientras se realizaba seguimiento variaba entre las 350 y las 750 parejas, actualmente se desconoce su número. Las gaviotas suelen mostrar una alta fidelidad sus los lugares de nidificación (Burger & Lesser 1980). Este hecho permitió que, mediante la búsqueda de egagrópilas en el entorno de sus nidos, se pudiera identificar las parejas especializadas en la depredación de paíños (Oro et al. 2005). Desde el año 2002 hasta la actualidad se ha realizado un protocolo de muestreo específico en el entorno de las dos cuevas y un transecto entre ambas destinado a recolectar las egagrópilas de gaviotas con restos de paíños y detectar a las parejas especialistas (ver detalles en Oro et al. 2005 y Sanz-Aguilar et al. 2009). Los primeros resultados obtenidos indicaron que una pequeña fracción de la población reproductora de gaviotas era responsable de la mayor parte de la depredación y siguiendo las recomendaciones de Oro y colaboradores se procedió a eliminar aquellas parejas consideradas especialistas (Sanz-Aguilar *et al.* 2009). Se trampearon y eliminaron, mediante inyección con un exceso de sedantes en la yugular, 11, 18 y 13 gaviotas, en 2004, 2005 y 2006, respectivamente. Durante las temporadas 2007-2009 no se eliminaron gaviotas en el entorno de las colonias de cría de paíño europeo. En 2010 se retomó el control anual de gaviotas patiamarillas.

Con una frecuencia semanal o máxima de 15 días se inspeccionó el interior de las colonias de cría de paíño europeo, las plataformas de entrada a las cuevas y el transecto o camino existente entre ambas. Se recogieron todas las egagrópilas encontradas en bolsas de plástico y se revisó su contenido en busca de posibles anillas. Además, se indicó en las fichas de campo el número de egagrópilas encontradas que pertenecían a pollos "si aparecían restos de plumón o toda la pluma era nueva, normalmente a partir de julio", y adultos depredados "si no se sabe la edad se asignaron a adulto"; así como el lugar de recolección (Cueva 1 "grande", Cueva 2 "pequeña", Transecto).

Grupo de Ecología y Demografía Animal

Material necesario para el seguimiento de las colonias de paíño.

- Frontales +Pilas
- Rodilleras
- Lápiz, bolígrafos y rotuladores permanentes
- Cuadernos y fichas de campo
- Anillas metálicas
- Alicates
- Abre-anillas
- Typex
- Bolsas de plástico con cierre hermético

Durante la temporada (2019) se configuraron nuevos croquis para detallar la localización de los nidos en el interior de las colonias (Apéndice 1). Estos croquis se actualizarán con los nuevos nidos encontrados cada temporada.

Personal encargado del trabajo de campo.

El personal encargado del seguimiento de las colonias reproductoras de la isla de Benidorm durante la temporada 2023 ha sido:

- Ana Sanz Aguilar (IMEDEA, CSIC-UIB). Coordinación y Seguimiento.
- Enrique Marco Jover. (Centro de Recuperación de Fauna de Santa Faz).
 Coordinación. Seguimiento. Captura-Marcaje-Recaptura de pollos y adultos reproductores.
- Andreu Rotger Vallespir (IMEDEA-UIB). Seguimiento
- José Santamaría, Román Aldeguer y Carles Grau (P.N. Serra Gelada-Ifac-Puig Campana i Ponotx-Bernia i Ferrer). Seguimiento Mitjana. Divulgación y Educación Ambiental.

(Cr

Grupo de Ecología y Demografía Animal

CSIC

- Joan Segovia (P.N. Serra Gelada-Ifac-Puig Campana i Ponotx-Bernia i Ferrer).
 Patrón.
- Juanjo Mascarell García (Guarda Rural-Guardapescas Marítimo del Ayto. de Benidorm). Recuperación y liberación de paíños juveniles. Divulgación y Educación Ambiental.
- Han colaborado en el seguimiento Eduardo Mínguez Díaz y Roberto Rodríguez Caro.

4. Anillamientos y recapturas en 2023

Durante la temporada de anillamiento 2023 se capturaron en sus nidos **407 aves adultas: 243 en la cueva grande y 164 en la cueva pequeña** (Tabla 1,2).

Se anillaron 131 pollos (Tabla 1,2).

									(.		
Tahla 1	Número	de a	nillamientos	reca	nturas v	/ recu	neracione	s de	naiño	en	2023
	i i unici o	acu	mannencos	,	prurus	, , , , , , , , , , , , , , , , , , , ,	perdelone	Juc	panio	C11	2025.

Nº Recapturas	Nº nuevos	№ pollos	№ indv anillados	Nº total de indv
adultos	adultos anillados	anillados	encontrados muertos	capturados
309	98	131	0	538

Tabla 2. Códigos de anillas utilizadas para marcaje de paíño en 2023

Serie
T093301-T093421 (Perdidas T093324, T093341, T093359)
T093088-T093200 (Perdida T093172, T093182)

Durante la presente temporada el **remanente de anillas** es: **T093422 – T093500**.

Para la próxima campaña serían necesarias unas 250-300 anillas más.

Como curiosidad, hay que indicar que unos pescadores recuperaron el 20/11/2023 a varias millas de la Marina un paíño anillado como pollo en la cueva pequeña en 2016 (T055665).

5. Reclutas

Se recapturaron como adultos reproductores 27 nuevos reclutas (individuos nacidos en las colonias que criaron por primera vez durante la temporada 2023). Del total de adultos reproductores capturados en nido (n=407) un 31% son individuos controlados como reproductores por primera vez este año (24% de nuevos anillamientos + 7% reclutas, Figura 3). En la colonia 1 hubo 15 reclutas y en la colonia 2, 12 reclutas.

Grupo de Ecología y Demografía Animal

Figura 3. Relación (%) entre el número de nuevos reproductores anillados y el número de nuevos reclutas locales con el número total de reproductores capturados. *** En 2005-2006 se produce un crecimiento importante de las colonias de reproducción tras la eliminación de gaviotas depredadoras durante la temporada de cría 2004.

Hasta la fecha, la mayor parte de los individuos marcados como pollos que han sido recapturados en la isla de Benidorm (n=332) fueron recapturados por primera vez con edades entre los 3-5 años. Tan sólo 3 individuos fueron recapturados con 2 años y en los 3 casos no se reprodujeron. La edad máxima detectada hasta la fecha es de 23 años. Sin embargo, 7 individuos se han observado reproduciéndose durante 21-24 años, lo que indica que su edad mínima en la última reproducción estaría entre los 24-27 años.

UC.

Grupo de Ecología y Demografía Animal

CSIC

Durante la presente temporada la depredación de paíños por gaviotas en la isla de Benidorm ha sido baja, afectando únicamente a la colonia de la cueva grande (Tablas 3-5, Figuras 4). El personal del centro de recuperación de Santa Faz llevó a cabo medidas de control de gaviota patiamarilla en la cueva grande mediante colocación de 4 cebos en 2 ocasiones: el 25 de abril y el 6 de julio 3. Con posterioridad a la primera actuación se detectaron 1 adulto y 2 pollos muertos, y tras la segunda actuación 2-3 pollos muertos.

Grupo de Ecología y Demografía Animal

Tabla 3. Número anual de parejas reproductoras de gaviota patiamarilla e individuos eliminados en la isla de Benidorm. *En 2020 se prospectaron las zonas 1,2 y 8 que se asume representaban 18% del total de gaviotas en la isla. *** En 2023 se prospectaron las zonas 1,2 y 3 que se asume representaban 48% del total de gaviotas en la isla.

Año	Zonas 1+2	Zona 8 (Faro)	Parejas estimadas	Eliminadas
1999	24	15		
2000	29	44		
2001	30	54		
2002	26	-	460	0
2003	62	44	560	0
2004	62	16	550	11
2005	43	56	650	14
2006	79	-	670	13
2007	56	-	600	0
2008	76	47	750	0
2009	21	51	700	0
2010	72	72	755	3
2011	51	53	727	1
2012	68	44	611	0
2013	28	28	347	~2-3
2014			?	2
2015			?	7
2016			?	4
2017			?	0
2018			?	~2-3
2019			?	~8-10
2020*	66	38	578	Mínimo 1
2021			; ?	Mínimo 1
2022			÷5	Mínimo 1
2023**	63 (+107 Zona 3)		354	5-6

Tabla 4. Número de egagrópilas con restos de paíño recolectadas en las diferentes áreas de estudio de la isla de Benidorm. Notación: T= transecto.

S

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

*CSIC

tanonte

Año	Grande	Pequeña	T2	Τ1	Total	Nº anillas reprod.
2000	-	-	-	-	230	8
2002	167 (70%)	36 (15%)	33 (13%)	4 (2%)	244	16
2003	151 (60.4%)	37 (14.8%)	62 (24.8%)	-	248	7
2004	84 (69.42%)	5 (4.13%)	32 (26.45%)	-	121	1
2005	29 (46,77%)	10 (16,13%)	23 (37,10%)	-	62	1
2006	71 (45,5%)	70 (44,9%)	15 (9,6%)	-	156	10
2007	43 (59.72%)	6 (8.33%)	23 (31.94%)	-	72	1
2008	66 (78.6%)	3 (3.6%)	15 (17,9%)	-	84	0
2009	100 (68%)	32 (22%)	15 (10%)	-	147	13
2010	25 (71%)	4 (11%)	6 (17%)	-	36	2
2011	35 (74%)	0	12 (26%)	-	47	1
2012	61 (91%)	3 (4.5%)	3 (4.5%)	-	67	0
2013	57 (90.5%)	0	6 (9.5%)	-	63	8
2014	104 (96.3%)	1 (0.9%)	3 (2.9%)	-	108	12
2015	64 (88%)	5 (7%)	4 (5%)	-	73	10
2016	62 (95%)	1 (2%)	2 (2%)	-	65	4
2017	1 (17%)	4 (67%)	1 (17%)	-	6	0
2018	35 (66%)	13 (25%)	5 (9%)	-	53	4
2019	9 (43%)	12 (57%)	0	-	21	8
2020	46 (85%)	3 (6%)	5 (9%)	-	54	2
2021	18 (80%)	2 (10%)	2 (10%)	-	22	0
2022	27 (69%)	10 (26%)	2 (5%)		39	6
2023	14 (100%)	0	0		14	0

Tabla 5. Número de egagrópilas con restos de paíño recolectadas en los diferentes mesesy años de estudio de la isla de Benidorm.

S

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

*CSIC

the factor

año	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Total anual
2002	21	59	78	43	13	29	243
2003	24	74	61	46	25	18	248
2004	13	43	35	13	9	8	121
2005	5	13	22	17	5	0	62
2006	6	10	54	39	42	5	156
2007	3	5	37	13	7	-	65
2008	1	11	27	27	18	-	84
2009	11	51	61	13	11	-	147
2010	4	11	10	8	3	-	36
2011	2	8	33	2	2	-	47
2012	-	10	33	17	7	-	67
2013	0	23	37	3	0	0	63
2014	-	27	56	25	0*	-	108
2015	2	18	45	3	5	-	73
2016	1	13	22	15	14	0	65
2017	0	1	1	0	4	0	6
2018	0	10	30	10	1	2	53
2019	0	8	11	0	2	0	21
2020		21	15	14	0	4	54
2021	0	5	11	3	0	3	22
2022		15	16	6	0	2	39
2023	4	1	8	1			14
Total mensual	97	437	703	318	168	71	1794

*No revisado la segunda quincena

Figura 4. Número de egagrópilas recolectadas en la isla de Benidorm en las 3 zonas prospectadas (Cueva 1=grande, Cueva 2= pequeña y Transecto 2) desde el año 2002. La eliminación de gaviotas depredadoras de paíños se realizó de 2004 a 2006, 2010-11 y 2013-2016 y 2018-2023.

7. Fechas de puesta.

Durante 2023 la primera puesta estimada corresponde al día 28/04/2023 y la última al 7/07/2023 (Figura 5). La fecha de puesta media fue el 22/5/23 y la mediana el 23/5/23.

CSIC

Ur.

Grupo de Ecología y Demografía Animal

Figura 5. Distribución acumulada de las fechas de puesta de paíño en 2023.

Figura 6. Evolución temporal de las fechas medianas de puesta. Se considera día 1 al 1 de mayo.

A 22 -	Tamaño de	Fecha	
Ano	muestra		Precision
1993	217	09-05-93	+/- 3 dias
1994	241	12-05-94	+/- 3 días
1995	161	06-06-95	+/- 3 días
1996	175	18-05-96	+/- 7 días
1997	163	17-05-97	+/- 7 días
1998	133	30-05-98	+/- 7 días
1999	163	17-05-99	+/- 7 días
2000	140	12-05-00	+/- 7 días
2001	174	14-05-01	+/- 7 días
2002	136	31-05-02	+/- 7 días
2003	161	01-06-03	+/- 7 días
2004	188	24-05-04	+/- 7 días
2005	230	14-05-05	+/- 3 días
2006	267	05-05-06	+/- 3 días
2007	260	22-05-07	+/- 7 días
2008	157	16-05-08	+/- 7 días
2009	174	09-05-09	+/- 7 días
2010	188	18-05-10	+/- 7 días
2011	148	25-05-11	+/- 7 días
2012	158	25-05-12	+/- 7 días
2013	183	20-05-13	+/- 7 días
2014	203	18-05-14	+/- 3 días
2015	188	21-05-15	+/- 7 días
2016	182	01-06-16	+/- 3 días
2017	205	25-05-17	+/- 3 días
2018	234	21-05-18	+/- 3 días
2019	239	17-05-18	+/- 3 días
2020	221	26-05-20	+/- 7 días
2021	200	06-06-21	+/- 7 días
2022	209	05-06-22	+/- 7 días
2023	232	23-05-23	+/- 7 días

Tabla 6. Fechas medianas de puesta del paíño en la isla de Benidorm.

*CSIC

tabunt:

S

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

8. Ocupación de cajas nido.

En la cueva pequeña se ocuparon 36 cajas sobre un total de 41 disponibles (86%) y en la cueva grande 10 sobre 21 (48%) (Figura 7).

S

Grupo de Ecología y Demografía Animal

Figura 7. Número de cajas nido ocupadas.

9. Parámetros reproductores

El número de puestas detectadas el presente año 2023 en la isla de Benidorm ha aumentado con respecto a 2022, en un 13%. El aumento de parejas ha sido similar en ambas cuevas, un 13.6% en la cueva grande y un 12.1% en la cueva pequeña (Figura 8). Se han detectado 244 puestas en los nidos en seguimiento (142 en la cueva grande y 102 en la cueva pequeña).

CSIC

Grupo de Ecología y Demografía Animal

Figura 8. Evolución anual del número de puestas monitorizadas en cada una de las colonias de la isla de Benidorm (Los datos a partir de 2008 reflejan un protocolo mínimo).

El éxito de eclosión ha sido similar en ambas colonias, pero el éxito de emplumamiento y, por lo tanto, también el éxito reproductor, han sido inferiores en la cueva grande (Tabla 7-8, Figuras 9-10). Durante la presente temporada el éxito de eclosión (0.66), de emplumamiento (0.89) y reproductor (0.59) han sido ligeramente superiores al promedio del periodo de estudio 1993-2023 (Promedios: Éxito de eclosión= 0.65; Éxito de emplumamiento=0.86; Éxito reproductor=0.56; Tabla 7-8).

5

Grupo de Ecología y Demografía Animal

CSIC

Figura 9. Estimas del éxito de eclosión y emplumamiento del paíño en la isla de Benidorm.

Figura 10. Estimas del éxito reproductor del paíño en la isla de Benidorm.

año	Nº	éxito	éxito	éxito	
	puestas	eclosión	emplumamiento	reproductor	
1993	279	0.76	0.89	0.67	
1994	286	0.63	0.81	0.51	
1995	229	0.54	0.89	0.48	
1996	196	0.58	0.72	0.42	
1997	184	0.59	0.81	0.48	
1998	185	0.54	0.72	0.38	
1999	203	0.65	0.78	0.50	
2000	216	0.54	0.78	0.42	
2001	184	0.67	0.76	0.51	
2002	142	0.58	0.68	0.39	
2003	171	0.63	0.85	0.53	
2004	193	0.68	0.85	0.58	
2005	237	0.73	0.87	0.63	
2006	281	0.69	0.92	0.63	
2007	271	0.75	0.95	0.71	
2008	170	0.75	0.92	0.68	
2009	186	0.62	0.86	0.54	
2010	194	0.79	0.93	0.73	
2011	181	0.72	0.92	0.66	
2012	170	0.67	0.90	0.59	
2013	219	0.53	0.81	0.43	
2014	214	0.64	0.95	0.61	
2015	213	0.64	0.89	0.57	
2016	196	0.60	0.91	0.54	
2017	216	0.64	0.90	0.57	
2018	241	0.75	0.91	0.68	
2019	274	0.67	0.91	0.61	
2020	236	0.64	0.96 0.62		
2021	220	0.68	0.88	0.60	
2022	216	0.59	0.91	0.53	
2022	244	0.66	0.89	0.59	
Promedio (93-23)		0.65	0.86	0.56	

Tabla 7: Parámetros reproductores básicos del paíño en la Isla de Benidorm.

S

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

Tabla 8a: Parámetros reproductores básicos de la cueva grande

		éxito	éxito	éxito
año	Nº puestas	eclosión	emplumamiento	reproductor
1993	215	0.8	0.92	0.73
1994	224	0.65	0.82	0.53
1995	181	0.53	0.91	0.48
1996	152	0.65	0.73	0.47
1997	148	0.57	0.78	0.45
1998	145	0.52	0.67	0.35
1999	145	0.63	0.76	0.48
2000	149	0.54	0.77	0.42
2001	114	0.66	0.71	0.46
2002	93	0.57	0.62	0.35
2003	106	0.66	0.81	0.54
2004	115	0.7	0.86	0.6
2005	141	0.73	0.86	0.63
2006	173	0.7	0.96	0.67
2007	176	0.75	0.92	0.69
2008	104	0.72	0.92	0.66
2009	118	0.64	0.82	0.5
2010	119	0.8	0.9	0.72
2011	109	0.71	0.91	0.64
2012	102	0.63	0.87	0.54
2013	124	0.52	0.77	0.40
2014	109	0.57	0.95	0.54
2015	101	0.54	0.89	0.49
2016	91	0.47	0.85	0.39
2017	113	0.59	0.91	0.54
2018	131	0.69	0.89	0.61
2019	150	0.75	0.95	0.71
2020	134	0.66	0.97	0.64
2021	126	0.73	0.83	0.61
2022	125	0.61	0.91	0.55
2023	142	0.67	0.83	0.56

aserra gelada

Tabla 8b: Parámetros reproductores básicos de la cueva pequeña.

*CSIC

		éxito	éxito	éxito
ano	Nº puestas	eclosion	emplumamiento	reproductor
1993	64	0.63	0.73	0.45
1994	62	0.56	0.77	0.44
1995	48	0.56	0.85	0.48
1996	44	0.34	0.67	0.23
1997	36	0.64	0.96	0.61
1998	40	0.58	0.87	0.5
1999	58	0.67	0.82	0.55
2000	6/	0.54	0.81	0.43
2001	/0	0.69	0.85	0.59
2002	49	0.59	0.79	0.47
2003	65	0.57	0.92	0.52
2004	/8	0.65	0.84	0.55
2005	96	0.73	0.87	0.64
2006	108	0.67	0.85	0.56
2007	95	0.75	0.99	0.74
2008	66	0.79	0.92	0./3
2009	68	0.59	0.92	0.54
2010	/6	0.79	0.96	0.75
2011	/2	0.73	0.94	0.68
2012	68	0.74	0.94	0.69
2013	95	0.52	0.92	0.47
2014	105	0.70	0.96	0.67
2015	112	0.73	0.89	0.65
2016	105	0./1	0.93	0.67
2017	103	0.69	0.90	0.61
2018	110	0.82	0.92	0.75
2019	124	0.58	0.85	0.49
2020	104	0.61	0.95	0.58
2021	94	0.61	0.96	0.59
2022	91	0.56	0.90	0.51
2023	102	0.65	0.98	0.63

Se ha analizado la supervivencia de aves adultas reproductoras mediante modelos de captura recaptura en el programa E-Surge. Cabe destacar que existe una gran heterogeneidad en los datos, debida principalmente a individuos que se recapturan tras numerosos años de no haber sido controlados. Este hecho hace que todos los tests de los GOF sean significativos y además de tener en cuenta una supervivencia diferencial para individuos recién marcados y experimentados, y una probabilidad de recaptura diferencial para individuos capturados y no capturados en la ocasión anterior (efecto de trap-dependence) se deban aplicar factores de corrección (c-hat) elevados: de 2.35 para la cueva grande y 2.39 para la cueva pequeña (en este caso se han eliminado 6 historias de captura que aumentaban de forma muy acusada la heterogeneidad). La selección de modelos (Tabla 9a) indica que tanto supervivencia como recaptura variaron con los años en la cueva grande, mientras que en la pequeña la supervivencia se ha mantenido relativamente constante. En promedio la supervivencia ha sido más elevada para los reproductores de la cueva pequeña.

Cueva grande c1					
Modelo	Supervivencia	Recaptura	np	Dev	QAICc
1c1	experiencia+t	trap+t	62	9683.139	4246.0527
2c1	experiencia+t	trap	33	9864.0467	4263.9145
3c1	Experiencia*t	trap+t	89	9651.9004	4288.4248
4c1	Experiencia	trap	33	9838.46	4253.0266
Cueva pequeña c2					
Modelo	Supervivencia	Recaptura	np	Dev	QAICc
1c2	experiencia+t	trap+t	60	5411.5851	2386.5159
2c2	experiencia+t	trap	32	5555.767	2389.2336
3c2	Experiencia*t	trap+t	86	5381.7125	2428.4083
4c2	Experiencia	trap+t	32	5484.0711	2359.2353
5c2	Experiencia	trap	4	5651.7849	2372.7757

Tabla 9a. Selección de modelos

Tabla 9b. Estimas de supervivencia promedio

Colonia	Nuevo reproductor/anillado	Experimentado
1	0.72 (0.68-0.76)	0.83 (0.81-0.85)
2	0.75 (0.69-0.80)	0.88 (0.86-0.90)

CSIC

Ur.

GENERALITAT VALENCIANA Grupo de Ecología y Demografía Animal

Figura 10a. Estimas de supervivencia (e intervalos de confianza 95%) del paíño en la isla de Benidorm- Cueva grande. Tras la primera reproducción observada en azul y reproductores experimentados en lila.

Figura 10b. Estimas de supervivencia (e intervalos de confianza 95%) del paíño en la isla de Benidorm- Cueva pequeña. Tras la primera reproducción observada en azul y reproductores experimentados en lila.

11. Seguimiento en Mitjana

Isla Mitjana (Serra Gelada)

En 2023 sólo se visitó la colonia en una única ocasión, el 20 de julio. El seguimiento fue realizado por José Santamaría y Román Aldeguer. Al tratarse de una revisión muy tardía, el número de nidos ocupados detectados estará subestimado. No se detectó ningún nido activo en la zona norte, aunque el esfuerzo fue inferior al de otros años de seguimiento. Se destaca la ocupación de 5 cajas nido de cemento y además se detectó una importante depredación de paíños por parte de gaviotas patiamarillas (con 14 egagrópilas encontradas bajo la grieta roja)

CSIC

5

Grupo de Ecología y Demografía Animal

2023									
DIA	ORIENTACIÓ	ZONA	NIU	ADULTS	OUS	POLLS	NIUS SEGURS	TOTAL NIUS	OBSERV
		RAMPA CARTELL	NOR1						
		PAIX SILENE 29 20	NOR2						NO ES
		BAIA SILLINE 30-20	NOR3						LOCALITZA
	NORD		AGR1			1	1	1	NINGUN NINU
	NORD	DALT GRIETA ROJA	AGR2						AQUESTA ZONA
			AGR3						(revisió ràpid
		RAMPA BAJADA PASO	DC1						de la zona)
		AGUJERO (dcha cartel)	DC2						
			5						
			lz 5						
			6	1			1	1	
		ADOSADOS	7			1	1	1	
			BLOQUES/ NIDALS	1 COV	1	3	5	5	ii prou blocs ocupats!!!
			en la zona			1	1	1	Bajo 6-7
		SALIENDO ADOSADOS	-						
	SUR	ZONA PARED	2						
			3						
			BLOQUES/ NIDALS			1	1	1	
20-07-2023			en la zona						
		1ER BLOQUE GRANDE	en la zona						
		BLOQUES DCHA.	-						
		CUEVA-GRIETA	-						
		BADALL	9	1 RIP			1	1	ad. mort
			12			1 RIP	1	1	poll mort
			11						
			13						moltes plomes (¿?)
		ZONA TOLL	-						
		CUEVA	-	4		11	15	15	3 ad. covant - 1 ad. Empollant - 2 polls RIP
		BLOQUE GRANDE	-						
		70NA N10	19						
		20104 1119	en la zona						
			20						
		ZUNA BADALL Z	en la zona						
		CUEVA ANTES PARED ROJA	-			2	2	2	no està en el mapa (¿?)
		CUEVA 2	-			1	1	1	
		GRIETA ROJA		1		1	2	2	
	!! NIU GAVINA BAIX GRIETA	14 egas	: fer una vista en abril-maig				32	32	NOVA SER UNA BÚSQUEDA TAN INTENSA COM EN
	ROJA!! =								2021

Tabla 11b. Datos históricos de ocupación de nidos y éxito reproductor del paíño en Mitjana (extraídos de las memorias del Plan de Acción de Aves marinas de la Comunidad Valenciana).

S.

Grupo de Ecología y Demografía Animal

Colonia Isla Mitjana	1988	1999	2002	2003	2004	2005	2006	2007	2008	2009
Puestas Controladas			53	49	47	55	61		40	41
TOTAL ESTIMADO	20	25	60	50	50	60	65	81*	45	46
Éxito Reproductor										0.6
Ν										20

*CSIC

tational factor

Colonia Isla Mitjana	2010	2011	2012	2013	2016	2018	2019	2020	2021	2022	2023
						68	45**	26	50+8	29	32
Puestas Controladas		49	34	54	58				***		***
TOTAL ESTIMADO	46	55	50	80					60	43	
ER		0.73									
Ν		49									

*Seguimiento en toda la isla mediante uso de reclamos

**Esfuerzo de seguimiento inferior al de otros años

*** Se prospecta también la zona norte, no mirada en otros años

En 2020 y 2022-23 el seguimiento es tardío (número de parejas infraestimado)

12. Recuperación de jóvenes desorientados

En 2023 se recuperó un único joven extraviado, el 25 de agosto en Campello. Se liberó en Campello por el personal de Santa Faz, al comprobar que se encontraba en buen estado.

CSIC

1 Inter

S.

Tabla 13. Registro histórico de entradas de paíño en el centro de recuperación de Santa Faz.

FECHA ENT	MUNICIPIO	FASE VITAL	CAUSAS DE ENTRADA
20-ago-98	Benidorm	Inmaduro	Traumatismo indeterminado
23-sep-98	Benidorm	Indeterminada	Hallazgo accidental
10-sep-99	Denia	Indeterminada	Hallazgo accidental
04-ene-01	Calpe/calp	Indeterminada	Indeterminada
26-ago-01	Benidorm	Indeterminada	Hallazgo accidental
08-oct-02	Benidorm	Indeterminada	Indeterminada
11-oct-02	Altea	Indeterminada	Indeterminada
02-sep-03	Benidorm	Cría	Indeterminada
08-dic-03	Javea/xabia	Indeterminada	Indeterminada
04-jul-04	Benidorm	Adulto	Indeterminada
19-ago-04	Guardamar del segura	Juvenil	Indeterminada
22-ago-04	Benidorm	Adulto	Hallazgo accidental
10-ago-05	Benidorm	Adulto	Hallazgo accidental
29-ago-05	Denia	Adulto	Hallazgo accidental
31-ago-06	Calpe	Inmaturo	Hallazgo accidental
09-nov-06	Benidorm	Juvenil	Hallazgo accidental
28-ago-07	Benidorm	Adulto	Trampeo anzuelo
08-sep-07	Benidorm	Juvenil	Hallazgo accidental
23-ago-08	Benidorm	Adulto	Hallazgo accidental
07-sep-08	Calpe	Adulto	Intoxicación petróleo
18-mar-09	Javea	Adulto	Hallazgo accidental
29-sep-09	Torrevieja	Adulto	Hallazgo accidental
01-may-11	Calpe	Adulto	Hallazgo accidental
23-sep-11	Torrevieja	Adulto	Atrapada en estructura
05-oct-11	Benidorm	Adulto	Hallazgo accidental
21-may-12	Campello	Adulto	Atrapada en piscifactoría
08-sep-13	Benidorm		Indeterminada
08-nov-13	Alacant		Traumatismo indeterminado
08-nov-13	Alacant		Hallazgo accidental
23-ago-14	Benidorm	Adulto	Hallazgo accidental
26-ago-14	Benissa	Subadulto	Indeterminada
26-ago-14	Benidorm	Cría	Indeterminada
29-ago-14	Benidorm	Adulto	Traumatismo indeterminado

CSIC

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

1.0				< 2 o
			1 0 0	000
			2010	100
			하십우	2.1.1
	0.0		1.1	4 9
		1.1	B. 0. 1	0 0 0

FECHA ENT	MUNICIPIO	FASE VITAL	CAUSAS DE ENTRADA
13-ago-15	Benidorm		Hallazgo accidental
13-ago-15	Benidorm		Hallazgo accidental
22-ago-15	Villajoyosa		Desnutrición
24-ago-16	Benidorm	Adulto	Hallazgo accidental
28-ago-16	Benidorm	Cría	Hallazgo accidental
22-sep-16	Benidorm	Juvenil	Hallazgo accidental
22-ago-17	Altea	Cría	Crías
17-sep-17	San Vicente del Raspeig	Juvenil	Hallazgo accidental
14-sep-18	Torrevieja		Hallazgo accidental
19-ago-19	Benidorm	Juvenil	Hallazgo accidental
24-ago-19	Benidorm	Juvenil	Hallazgo accidental
27-ago-19	Benidorm	Juvenil	Hallazgo accidental
4-sep-19	Benidorm	Juvenil	Hallazgo accidental
7-sept-20	Benidorm	Juvenil	Hallazgo accidental
17-sept-20	Benidorm	Juvenil	Hallazgo accidental
1-sept-21	Benidorm	Juvenil	Hallazgo accidental
13-sept-21	Benidorm	Juvenil	Hallazgo accidental
7-sept-22	Benidorm	Juvenil	Hallazgo accidental
23-sept-22	Elche (Aeropuerto)	Juvenil	Hallazgo accidental
25-ago-23	Campello	Juvenil	Hallazgo accidental

Los datos históricos de entradas en Santa Faz (Tabla 13) destacan la presencia de paíños durante el invierno (diciembre, enero y marzo) en aguas alicantinas.

Tabla 14. Registro histórico de paíños desorientados recuperados y liberados enBenidorm por personal de Serra Gelada y/o Guarda Rural.

Año	Número	Observaciones
2016	6	Uno de ellos anillado en cueva grande
2017	1	
2018	1	
2019	4	
2020	2	
2021	2	
2022	1	
2023	0	

13. Publicaciones científicas (1989-2023)

 Martínez Abraín, A. and Dolz, R. 1989. Avance del primer censo exhaustivo de aves marinas nidificantes en la Comunidad Valenciana (primavera 1988). Libro Actas de la primera reunión del GIAM (Formentera). GOB: Volumen: Especial Páginas: 119-126.

- Dies, J.I, Giménez, M., Martínez, A., Dolz C y Huertas, J. 1990. Localización y censo de los núcleos coloniales reproductores de aves marinas en tramos costeros e islas de la Comunidad Valenciana. Medi 1:53.
- Mínguez, E. 1994. Censo, cronología de puesta y éxito reproductor del paiño común (*Hydrobates pelagicus*) en la Isla de Benidorm (Alicante E de España). Ardeola 41:3-11.
- Mínguez, E. 1996. Nestling feeding strategy of the British storm-petrel Hydrobates pelagicus in a Mediterranean colony. Journal of Zoology 239:633-643.
- 5. Mínguez, E. 1997. Evidence of occasional re-laying in the British Storm-petrel (*Hydrobates pelagicus*). Colonial Waterbirds 20:102-104.
- Minguez E. 1997. Olfactory nest recognition by British storm-petrel chicks. Animal Behaviour, 53:701-707.
- 7. Minguez E. 1997. Estimation of metabolic costs and food conversion efficiency in British storm-petrel, *Hydrobates pelagicus* chicks. Folia Zoologica, 46:94-96.
- 8. Merino S. & Minguez E. 1998. Absence of haematozoa in a breeding colony of the storm petrel *Hydrobates pelagicus*. Ibis, 140:180-181.
- 9. Mínguez, E. 1998. The costs of incubation in the British Storm-petrel: an experimental study in a single-egg layer. Journal of Avian Biology 29:183-189.
- 10. Merino S., Minguez E., & Belliure B. 1999. Ectoparasite effects on nestling European Storm-petrels. Waterbirds, 22:297-301.

 de Leon, A. & Mínguez, E. 2003. Occupancy rates and nesting success of European storm-petrels breeding inside artificial nest-boxes. Scientia Marina 67:109-112.

- 12. de Leon, A., Mínguez, E. & Belliure, B. 2003. Self-odour recognition in European storm-petrel chicks. Behaviour 140:925-933.
- 13. Mínguez, E., & Oro, D. 2003. Variations in nest mortality in the European Storm Petrel Hydrobates pelagicus. Ardea 91:113-117.
- 14. Mínguez, E., D. Oro, E. De Juana, and A. Martinez-Abrain. 2003. Mediterranean seabird conservation: what can we do? Scientia Marina 67:3-6.
- 15. Arroyo B., Minguez E., Palomares L., & Pinilla J. 2004. The timing and pattern of moult of flight feathers of European Storm-petrel *Hydrobates pelagicus* in Atlantic and Mediterranean breeding areas. Ardeola, 51:365-373.
- Martinez-Abrain A., Sarzo B., Villuendas E., Bartolome M. A., Minguez E., & Oro D. 2004. Unforeseen effects of ecosystem restoration on yellow-legged gulls in a small western Mediterranean island. Environmental Conservation, 31:219-224.
- Mínguez, E. 2004. Paíño Europeo, Hydrobates pelagicus. Pages 55-57 in C. G. a.
 J. C. A. e. A. Madroño editor. Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife, Madrid.
- 18. Mínguez, E.; Sanz, A.; De León, A. & Junza, M. 2005. Control selectivo de gaviotas patiamarilla: porque no todas las gaviotas comen paíños. Quercus, 228: 81.
- Oro, D., de Leon, A., Mínguez, E. & Furness, R. W., 2005. Estimating predation on breeding European storm-petrels (*Hydrobates pelagicus*) by yellow-legged gulls (*Larus michahellis*). Journal of Zoology, 265: 21-429.
- 20. Sanz, A.; Mínguez, E.; de León, A.; Martínez-Abraín, A.; Sarzo, B.; Santamaría, J. & Oro, D. 2005. Scientifically-based management solves conflict between European storm petrels and their facultative predator at minimum cost. Ecologia Mediterranea 31(1): 104-105.
- 21. Minguez E. 2006. El Paíño Europeo. Ecosistemas, 15:1-5.

- 23. Sarzo, B. & Sanz, A. 2008. Elimination des Goélands leucophées spécialistes: une méthode de conservation réussie pour les Océanites tempête de Benidorm (Parc National de Serra Gelada, Espagne). Ateliers de travail du LIFE "Conservation des populations d'oiseaux marins des îles de Marseille", Marseille 2008, pp.51-52. 7.
- 24. Tavecchia, G., E. Mínguez, A. de Leon, M. Louzao, & D. Oro. 2008. Living close, doing differently: small-scale asynchrony in demographic parameters in two species of seabirds. Ecology 89:77-85.
- Sanz-Aguilar, A., Martínez-Abraín, A., Tavecchia, G., Mínguez, E. & Oro, D. 2009.
 Evidence-based culling of a facultative predator: efficacy and efficiency components. Biological Conservation 142:424-431.
- 26. Sanz-Aguilar, A., Massa, B., Lo Valvo, F., Oro, D., Mínguez, E., & Tavecchia, G.
 2009. Contrasting age-specific recruitment and survival at different spatial scales:
 a case study with the European storm petrel. Ecography 32:637-646. (*)
- 27. Sanz-Aguilar, A., Tavecchia, G., Mínguez, E., Massa, B., Lo Valvo, F., Ballesteros, G.A., Barberá, G.G., Amengual, J.F., Rodríguez, A., McMinn, M, & Oro, D. 2010. Recapture processes and biological inference in monitoring burrowing nesting seabirds. Journal of Ornithology 151:133-146.
- 28. Sanz-Aguilar A. Storm petrel demography and population dynamics at Benidorm Island. 2011. Valeiras, X., Muñoz, G., Bermejo, A., Arcos, J.M. y Paterson, A.M. (Eds.). In: Actas del 6º Congreso del GIAM y el Taller internacional sobre la Ecología de Paiños y Pardelas en el sur de Europa. Boletín del Grupo Ibérico de Aves Marinas, 34:143-146.
- 29. Sanz-Aguilar A. Removing specialist gulls: a successful conservation method for the European storm petrel. 2011. Valeiras, X., Muñoz, G., Bermejo, A., Arcos, J.M. y Paterson, A.M. (Eds.). In: Actas del 6º Congreso del GIAM y el Taller internacional sobre la Ecología de Paiños y Pardelas en el sur de Europa. Boletín del Grupo Ibérico de Aves Marinas, 34:181-184.

GENERALITAT VALENCIANA

- 31. Sanz-Aguilar A, Mínguez E & Oro D. 2012. Is laying a large egg expensive? Femalebiased cost of first reproduction in a petrel. The Auk 129:510-516. (*)
- 32. Libois E, Gimenez O, Oro D, Mínguez E, Pradel R & Sanz-Aguilar A. 2012. Nest boxes: A successful management tool for the conservation of an endangered seabird. Biological Conservation 155:39-43. (*)
- 33. Sin-Yeon K, Sanz-Aguilar A, Mínguez E & Oro D. 2012. Small-scale spatial variation in evolvability for life-history traits in the storm petrel. Biological Journal of the Linnaean Society 106:439-446. (*)
- 34. Sanz-Aguilar A, Libois E, Minguez E, Oro D, Pradel R & Gimenez O. 2012 Conservation of the Mediterranean Storm at Benidorm Island (Spain). Yesou P & Baccetti N Eds. In: Proceedings of the Alghero 2011 Medmaravis symposium 103-110.
- 35. Tenan S., Pradel, R. Tavecchia, G., Igual J.M., Sanz-Aguilar A., Genovart M., Oro,D., 2014. Hierarchical modelling of population growth rate from individual capture-recapture data. Methods in Ecology and Evolution 5: 606-614.
- 36. Dell'Ariccia G, Blanc L, Bonadonna F, Sanz-Aguilar A., 2015. Mediterranean storm petrels rely on nest position for homing after migration: a test with artificial nest boxes. Animal Behaviour 107: 97-104.
- 37. Ramírez F., Afán I., Tavecchia G., Catalán I.A., Oro D., Sanz-Aguilar A. 2016. Oceanographic drivers and mistiming processes shape breeding success in a seabird. Proceedings of the Royal Society of London B: Biological Sciences 283. DOI: 10.1098/rspb.2015.2287
- Hernández N.; Oro D.; Sanz-Aguilar A. 2017. Environmental conditions, age, and senescence differentially influence survival and reproduction in the Storm Petrel. Journal of Ornithology 158 :113-123 DOI: 10.1007/s10336-016-1367-x

39. Matovic, N., Cadiou, B., Oro, D., Sanz-Aguilar, A. 2017. Disentangling the effects of predation and oceanographic fluctuations in the mortality of two allopatric seabird populations Population Ecology 59: 225-238 DOI: 10.1007/s10144-017-0590-5.

Grupo de Ecología y Demografía Animal

CSIC

- 40. Garnier R, Ramos R, Sanz-Aguilar A, Poisbleau M, Weimerskirch H, Burthe S, Tornos J, Boulinier T. 2017. Interpreting ELISA analyses from wild animal samples: some recurrent issues and solutions. Functional Ecology. 31:2255-2262 DOI:10.1111/1365-2435.12942
- 41. Tavecchia G, Oro D, Sanz-Aguilar A, Bechet A. 2017. The multidimensional value of long-term individual-based studies: more than lots of data. Avocetta 41:19-21.
- 42. Keogan K; Daunt F; Wanless S; Phillips RA; Walling CA; Agnew P; Ainley DG; Anker-Nilssen T ;Ballard G; Barrett RT; Barton KJ; Bech C; Becker P; Berglund P-A ;Birkhead T; Bollache L; Bond A; Bouwhuis S; Bradley R; Burr Z ;Camphuysen K; Catry P; Chiaradia A; Christensen-Dalsgaard S; Cuthbert R ;Dehnhard N; Descamps S; Diamond T; Divoky G; Drummond H; Dugger KM; Dunn MJ ;Emmerson L; Erikstad KE; Fort J; Fraser W; Gaston A; Genovart M; Gilg O; González-Solís J; Gremillet D; Hansen J; Hanssen SA; Harris M; Hedd A; Hinke J; Igual JM; Jahncke J ;Jones I; Kappes PJ; Lang J; Langset M; Lescroël A; Lorentsen SH; Lyver PO'B ;Mallory M; Moe B; Montevecchi WA; Monticelli D; Mostello C; Newell M; Nicholson L ;Nisbet I; Olsson O; Oro D; Pattison V; Poisbleau M; Pyk T; Quintana F; Ramos J; Ramos R ;Reiertsen TK; Rodríguez C; Ryan P; Sanz-Aguilar A; Schmidt NM; Shannon P; Sittler B; Southwell C; Surman C; Svagelj WS; Trivelpiece W; Warzybok P; Watanuki Y; Weimerskirch H; Wilson PR ;Wood AG; Phillimore AB; Lewis S. 2018. Global phenological insensitivity to shifting ocean temperatures among seabirds. Nature Climate Change 8:313-318
- 43. Martínez C; Roscales JL; Sanz-Aguilar A; Gobnzález-Solís J. 2019. Inferring migration of European storm petrel (Hydrobates pelagicus) from stable isotope analysis and observational field data. Ardeola 66(1) :13-32.

44. Rodríguez A; Arcos JM; Bretagnolle V; Dias MP; HolmesND; Louzao M; Provencher; Raine AF; Ramírez F; Rodríguez B; Ronconi RA; Taylor RS; Bonnaud E; Borrelle S; Cortés V; Descamps S; Friesen VL; Genovart M; Hedd A; Hodum P; Humphries G; Le Corre M; Lebarbenchon C; Martin R; Melvin EF; Montevecchi WA; Pinet P; Pollet IL; Ramos R; Russell JC; Ryan PG; Sanz-Aguilar A; Spatz D; Travers M; Votier S; Wanless R; Woehler E; Chiaradia A. 2019. Future Directions in Conservation Research on Petrels and Shearwaters. Frontiers in Marine Science 6:94

Grupo de Ecología y Demografía Animal

CSIC

- Sanz-Aguilar, A., Zuberogoitia, I., Sallent, Á., Picorelli, V., Navedo, J.G., Garaita, R.
 2019. Paíño europeo Hydrobates pelagicus. En: Enciclopedia Virtual de los Vertebrados Españoles. López, P., Martín, J., González-Solís, J. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. <u>http://www.vertebradosibericos.org/</u>
- 46. Sanz-Aguilar, A.; Payo-Payo, A.; Rotger, A.; Yousfi, L.; Moutailler, S.; Beck, C.; Dumarest, M.; Igual, J.M.; Miranda, M.A.; Viñas Torres, M.; Picorelli, V.; Gamble, A.; Boulinier, T. 2020. Infestation of small seabirds by Ornithodoros maritimus ticks: effects on chick body condition, reproduction and associated infectious agents. Ticks and Tick-borne Diseases 11:101281 https://doi.org/10.1016/j.ttbdis.2019.101281
- 47. Rotger, A.; Sola, A.; Tavecchia, G.; Sanz-Aguilar, A. 2021. Foraging far from home: Gps-tracking of Mediterranean Storm-Petrels Hydrobates pelagicus melitensis reveals long-distance foraging movements. Ardeola, 68: 3-16.
- 48. Militao T., Sanz-Aguilar A., Rotger A., Ramos R. 2022. Non-breeding distribution and at-sea activity patterns of the smallest European seabird, the European Storm Petrel Hydrobates pelagicus. Ibis, 164: 1160–1179.
- 49. Militao, T., Sanz-Aguilar, A., Rotger-Vallespir, A., & Ramos, R. (2022). Los paíños del Mediterráneo occidental invernan en el Atlántico. Quercus, (439), 53-54.
- 50. Clark BL, Carneiro APB, Pearmain EJ, Rouyer M-M, Clay TA, Cowger W, Phillips RA, Manica A, Hazin C, Eriksen M, González-Solís J, Adams J, Albores-Barajas YV, Alfaro-Shigueto J, Alho MS, Araujo DT, Arcos JM, Arnould JPY, Barbosa NJP, Barbraud C, Beard AM, Beck J, Bell EA, Bennet DG, Berlincourt M, Biscoito M, Bjørnstad OK, Bolton M, Booth Jones KA, Borg JJ, Bourgeois K, Bretagnolle V, Bried J, Briskie JV, Brooke ML, Brownlie KC, Bugoni L, Calabrese L, Campioni L,

CSIC

Carey MJ, Carle RD, Carlile N, Carreiro AR, Catry P, Catry T, Cecere JG, Ceia FR, Cherel Y, Choi C-Y, Cianchetti-Benedetti M, Clarke RH, Cleeland JB, Colodro V, Congdon BC, Danielsen J, De Pascalis F, Deakin Z, Dehnhard N, G, Delord K, Descamps S, Dilley BJ, Dinis HA, Dubos J, Dunphy BJ, Emmerson LM, Fagundes AI, Fayet AL, Felis JJ, Fischer JH, Freeman AND, Fromant A, Gaibani G, García D, Gjerdrum C, Gonçalves Correia Gomes IS, Forero MG, Granadeiro JP, Grecian WJ, Grémillet D, Guilford T, Hallgrimsson GT, Halpin LR, Hansen ES, Hedd A, Helberg M, Helgason HH, HenryLM, Hereward HFR, Hernandez-Montero M, Hindell MA, Hodum PJ, Imperio S, Jaeger A, Jessopp M, Jodice PGR, Jones CG, Jones CW, Jónsson JE, Kane A, Kapelj S, Kim Y, Kirk H, Kolbeinsson Y, Kraemer PL, Krüger L, Lago P, Landers TJ, Lavers JL, Le Corre M, Leal A, Louzao M, Madeiros J, Magalhães M, Mallory ML, Masello JF, Massa B, Matsumoto S, McDuie F,

Grupo de Ecología y Demografía Animal

Magalhaes M, Mallory ML, Masello JF, Massa B, Matsumoto S, McDule F, McFarlane Tranquilla L, Medrano F, Metzger BJ, Militão T, Montevecchi WA, Montone RC, Navarro-Herrero L, Neves VC, Nicholls DG, Nicoll MAC, Norris K, Oppel S, Oro D, Owen E, Padget O, Paiva VH, Pala D, Pereira JM, Péron C, Petry MV, Pina A, Moreira Pina AT, Pinet P, Pistorius PA, Pollet IL, Porter BJ, Poupart TA, Powell CDL, Proaño CB, Pujol-Casado J, Quillfeldt P, Quinn JL, Raine AF, Raine H, Ramírez I, Ramos JA, Ramos R, Ravache A, Rayner MJ, Reid TA, Robertson GJ, Rocamora GJ, Rollinson DP, Ronconi RA, Rotger A, Rubolini D, Ruhomaun K, Ruiz A, Russell JC, Ryan PG, Saldanha S, Sanz-Aguilar A, Sardà-Serra M, Satgé YG, Sato K, Schäfer WC, Schoombie S, Shaffer SA, Shah N, Shoji A, Shutler D, Sigurðsson IA, Silva MC, Small AE, Soldatini C, Strøm H, Surman CA, Takahashi A, Tatayah VRV, Taylor GA, Thomas RJ, Thompson DR, Thompson PM, Thórarinsson TL, Vicente-Sastre D, Vidal E, Wakefield ED, Waugh SM, Weimerskirch H, Wittmer HU, Yamamoto T, Yoda K, Zavalaga CB, Zino FJ, Dias MP. Global assessment of marine plastic exposure risk for oceanic birds. Nature Communications, 14, 3665 (2023). https://doi.org/10.1038/s41467-023-38900-z

14. Contribuciones a Congresos

1. 7th World Seabird Twitter Conference.

2021.

Militao T, Sanz-Aguilar A, Rotger A, Ramos R. Non-breeding distribution and atsea activity patterns of the smallest European seabird, the European storm petrel (Hydrobates pelagicus). 4-6 May 2021.

2. 6th World Seabird Twitter Conference.

2020.

Rotger, A. GPS tracking of breeding Mediterranean Storm Petrels (Hydrobates pelagicus melitensis) reveals long-distance foraging movements. 4-6th May 2020.

3. XXIV Congreso Español y VII Ibérico de Ornitología.

Cádiz, 2020.

Poster: Sola Galindo, A.; Rotger, A.; Tavecchia, G.; Sanz-Aguilar, A. 2019. Descubriendo las áreas de alimentación del paíño mediterráneo.

4. Universidad de Valencia.

Valencia, 2019.

Comunicación invitada: Sanz-Aguilar A. Seabird survival

5. Il Joint Congress on Evolutionary Biology.

Montpellier, Francia. 2018.

Comunicación: Boulinier T; Ramos R; Garnier R; Sanz-Aguilar A; Burthe S; Poisibleau M; Weimerskirch H; Gamble A; Quillfeldt P; González-Solís J; Staszewski V; Granroth-Wilding H; Jaeger A; Delord K; Barbraud C; Cunningham E; McCoy KD; Daunt F; Tveraa T; Tornos J. Evolution of a neglected trait between life history and immunology: maternal antibody persistence.

6. 14th International Seabird Group Conference.

Liverpool, UK. 2018.

Comunicación invitada: Sanz-Aguilar A. Seabird survival

7. XX Congreso de Anillamiento Científico de Aves.

Murcia, 2017.

Comunicación invitada: Sanz-Aguilar A. Estudios de captura-recaptura aplicados al anillamiento.

Grupo de Ecología y Demografía Animal

8. Jornada de seguimiento del paíño en el Mediterráneo.

Benidorm, España. 2017.

Comunicaciones de Eduardo Mínguez, Ana Sanz Aguilar y Alejandro Izquierdo.

9. 2nd World Seabird Conference.

Cape Town, South Africa. 2015.

Comunicación: Boulinier T, Ramos R, Sanz-Aguilar A, Burthe S, Poisbleau M, Weimerskirch H, Quillfeldt P, Gonzalez-Solis J, Jaeger A, Delord K, Cunningham E, Daunt F, Tveraa T, Staszewski V, Tornos J, Garnier R, "Temporal persistence of antibodies in shearwaters, petrels, albatrosses, kittiwakes, shags, auks and penguins: a comparative approach of a neglected life history trait."

10. 2nd World Seabird Conference.

Cape Town, South Africa. 2015

Comunicación: Dell'Ariccia G, Blanc L, Bonadonna F, Sanz-Aguilar A. "Mediterranean storm petrels rely on nest position for homing after migration: a test with artificial nest boxes".

11. Long-term studies as a tool for wildlife conservation.

Benidorm, Spain. 25-06- 2012 al 2-06- 2012. Ciudadanos por la Ciencia & CEFE-CNRS .

Comunicación: Sanz-Aguilar A, "20 years guarding storm petrels in Benidorm Island".

12. 13th MEDMARAVIS Pan-Mediterranean Symposium.

Alghero, Italy. 14-10-2011 al 17-10-2011. MEDMARAVIS and Porto Conte Regional Park. In association with PIM Mediterranean Small Islands Initiative *Comunicación:* Sanz-Aguilar Ana, Libois Emmy, Minguez Eduardo, Oro Daniel, Pradel Roger, Olivier Gimenez. Nest boxes: a successful management tool for the conservation of the Mediterranean storm petrel at Benidorm Island (Spain).

13. ICCB 2011.

Aukland, New Zealand. 5-12-2011 al 9-12-2011. Society for Conservation Biology. *Comunicación:* Sanz-Aguilar Ana, Libois Emmy, Minguez Eduardo, Oro Daniel, Pradel Roger, Olivier Gimenez. Nest boxes: a successful management tool for the conservation of the Mediterranean storm petrel at Benidorm Island (Spain).

Grupo de Ecología y Demografía Animal

14. IV Congrés d'Ornitologia de les Balears.

Menorca, 18-01-2008 al 20-01-2008. Societat Ornitològica de Menoría (SOM). *Comunicación:* Sanz-Aguilar A. "Pequeños y nocturnos: métodos de Estudio del Marineret, *Hydrobates pelagicus*".

15. Jornadas Técnicas: Aves Marinas, Islas y Cambio Global en el Mediterráneo. Una Estrategia para la Conservación.

Murcia, 29-11-2007 al 30-11-2007. Región de Murcia, ANSE, Naturama, CEMACAM.

Comunicación: Sanz-Aguilar A. "Cambios poblacionales en aves marinas por el cambio global".

16. Taller Internacional sobre Ecología de paiños y pardelas en el sur de Europa

Cariño (A Coruña), 16-11-2007 al 18-11-2007. Sociedade Galega de Ornitología (SGO), Sociedade Galega de Historia Natural (SGHN) y Grupo Ibérico de Aves Marinas (GIAM-SEO/Birdlife).

Comunicación: Sanz-Aguilar A. "El Paíño Europeo, situación general, biología reproductora, tendencias poblacionales, amenazas y medidas de conservación".

17. 31st Wbs. Annual meeting of the Waterbird Society.

Barcelona, 30-10-2007 al 3-11-2007. Waterbird Society- Universidad de Barcelona- Seo-BirdLife.

Comunicación: Sanz-Aguilar A. "Age and experience dependent tradeoff between survival and reproduction in a long lived bird".

18. El Escateret en el Parque Natural de Serra Gelada. Labores para su conservación Benidorm (Alicante), 16-10-2007. Parque Natural de la Serra Gelada.

Comunicación: Sanz-Aguilar, A. Resultados del seguimiento a largo plazo de las colonias de la Illa de Benidorm ¿son suficientes 15 años?"

Comunicación: Perez I. "Distribución en la Comunidad Valenciana"

Comunicación: Minués E. "Que hacemos en el Parque por el escateret"

Comunicación: Santamaría J. "La colaboración con el estudio del paíño".

19. Talleres de Ecología 2007.

Elche (Alicante), 14-09-2007. Área de Ecología, Departamento de Biología Aplicada, UMH.

Grupo de Ecología y Demografía Animal

Comunicación: Sanz-Aguilar A. "Experience-dependent tradeoff between survival and reproduction in a long lived bird".

20. XVIII Congreso Español y III Ibérico de Ornitología

Elche (Alicante), 12-10-2006 al 14-10-2006. SEO/BirdLife.

Poster: Sanz-Aguilar, A.; Mínguez, E.; Noguera, J.M.; Perez-García, J.M.; Santamaría, J. & Oro, D.-"Patrones de reclutamiento y edad de la primera reproducción del Paíño europeo (Hydrobates pelagicus) en la Isla de Benidorm". *Poster:* Sanz-Aguilar, A.; de León, A; Martínez-Abraín, A.; Mínguez, E.; Noguera, J.M.; Perez-García, J.M.; Santamaría, J.; Sarzo, B. & Oro, D.- "Eliminación selectiva de gaviotas predadoras de Paíño europeo (Hydrobates pelagicus) en la Isla de Benidorm

21. Talleres de Ecología 2006

Elche (Alicante), 2006. Área de Ecología, Departamento de Biología Aplicada, UMH

Comunicación: Sanz-Aguilar A. "Patrones de reclutamiento y edad de la primera reproducción del Paíño europeo en la Isla de Benidorm".

22. **Seminarios de Ecología 2006**. Murcia, 2006. Departamento de Ecología e Hidrología, Universidad de Murcia.

Comunicación: Sanz-Aguilar A. "Patrones de reclutamiento y edad de la primera reproducción del Paíño europeo en la Isla de Benidorm".

23. Il reunión del GIAM. Formentera, 1989.

Comunicación y publicación en actas: Martínez Abraín, A. y Dolz, R. "Primer Censo de Aves Marinas nidificantes en el litoral e islas de la Comunidad Valenciana".

24. MEDMARAVIS. Calviá, 1989.

Poster y publicación en actas: Martínez Abraín, A. "Gestión de las Zonas Insulares Valencianas para la protección de las colonias de paiño común Hydrobates pelagicus".

Blackmer, A. L., J. T. Ackerman, and G. A. Nevitt. 2004. Effects of investigator disturbance on hatching success and nest-site fidelity in a long-lived seabird, Leach's storm-petrel. Biological Conservation 116:141-148.

Grupo de Ecología y Demografía Animal

Bonadonna F & Sanz-Aguilar A. 2012. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Animal Behaviour 84: 509-513.

Burger J., Lesser, F., 1980. Nest site selection in an expanding population of Herring Gulls. Journal of Field Ornithology 51, 270–280.

Critchley, E.J., Grecian, W.J., Kane, A., Jessopp, M.J., and Quinn, J.L. 2018. Marine protected areas show low overlap with projected distributions of seabird populations in Britain and Ireland. Biol. Conserv. 224: 309–317.

Davis, P. 1957. The breeding of the Storm Petrel. British Birds 85-101-371-84.

Dell'Ariccia, G., Célérier, A., Gabirot, M., Palmas, P., Massa, B., Bonadonna, F. 2014. Olfactory foraging in temperate waters: sensitivity to dimethylsulphide of shearwaters in the Atlantic Ocean and Mediterranean Sea. Journal of Experimental Biology 217: 1701-1709.

Dell'Ariccia G, Blanc L, Bonadonna F, Sanz-Aguilar A., 2015. Mediterranean storm petrels rely on nest position for homing after migration: a test with artificial nest boxes. Animal Behaviour 107: 97-104.

Hensler, G. L., and J. D. Nichols. 1981. The Mayfield Method of Estimating Nesting Success - A Model, Estimators and Simulation Results. Wilson Bulletin 93:42-53.

Johnson, D. H. 1979. Estimating Nest Success - Mayfield Method and an alternative. Auk 96:651-661.

Lago, P., Austad, M., and Metzger, B. 2019. Partial migration in the Mediterranean Storm Petrel Hydrobates pelagicus melitensis. Mar. Ornithol. 47: 105–113.

Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals - A unified approach with case-studies. Ecological Monographs 62:67-118.

Grupo de Ecología y Demografía Animal

Martínez, C., Roscales, J.L., Sanz-Aguilar, A., and González-Solís, J. 2019. Inferring the Wintering Distribution of the Mediterranean Populations of European Storm-Petrels Hydrobates pelagicus melitensis from Stable Isotope Analysis and Observational Field Data. Ardeola 66(1): 13–33.

Matovic, N., Cadiou, B., Oro, D., Sanz-Aguilar, A. 2017. Disentangling the effects of predation and oceanographic fluctuations in the mortality of two allopatric seabird populations Population Ecology 59: 225-238 DOI: 10.1007/s10144-017-0590-5.

Mayfield, H. F. 1961. Nesting success calculated from exposure. Wilson Bulletin 73:255-261.

Mayfield, H. F. 1975. Suggestion for calculating nest success. Wilson Bulletin 87:456-466.

Merino, S., Mínguez, E., Belliure, B., 1999. Ectoparasite effects on nestling European storm-petrels. Waterbirds 22: 297–301.

Militao T., Sanz-Aguilar A., Rotger A., Ramos R. 2022. Non-breeding distribution and atsea activity patterns of the smallest European seabird, the European Storm Petrel Hydrobates pelagicus. Ibis, in press

Mínguez, E. 1994. Censo, cronología de puesta y éxito reproductor del paiño común (*Hydrobates pelagicus*) en la Isla de Benidorm (Alicante E de España). Ardeola 41:3-11.

Mínguez, E. 1998. The costs of incubation in the British Storm-petrel: an experimental study in a single-egg layer. Journal of Avian Biology 29:183-189.

Mínguez, E., and D. Oro. 2003. Variations in nest mortality in the European Storm Petrel *Hydrobates pelagicus*. Ardea 91:113-117.

Nevitt, G. A., Bonadonna, F.2005. Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biology Letters 1:303-305.

Oppel, S., Bolton, M., Carneiro, A.P., Dias, M.P., Green, J.A., Masello, J.F., Phillips, R.A., Owen, E., Quillfeldt, P., and Beard, A. 2018. Spatial scales of marine conservation management for breeding seabirds. Marine Policy 98: 37–46.

Grupo de Ecología y Demografía Animal

Oro, D., A. de Leon, E. Mínguez, and R. W. Furness. 2005. Estimating predation on breeding European storm-petrels (*Hydrobates pelagicus*) by yellow-legged gulls (Larus Michahellis). Journal of Zoology 265:421-429.

Rotger, A.; Sola, A.; Tavecchia, G.; Sanz-Aguilar, A. 2021. Foraging far from home: Gpstracking of Mediterranean Storm-Petrels Hydrobates pelagicus melitensis reveals longdistance foraging movements. Ardeola, in press.

Sanz-Aguilar, A., Martínez-Abraín, A., Tavecchia, G., Mínguez, E. & Oro, D. 2009b. Evidence-based culling of a facultative predator: efficacy and efficiency components. Biological Conservation 142:424-431.

Sanz-Aguilar, A., Zuberogoitia, I., Sallent, Á., Picorelli, V., Navedo, J.G., Garaita, R. (2019). Paíño europeo – Hydrobates pelagicus. En: Enciclopedia Virtual de los Vertebrados Españoles. López, P., Martín, J., González-Solís, J. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. <u>http://www.vertebradosibericos.org/</u>

Sanz-Aguilar, A., Payo-Payo, A., Rotger, A., Yousfi, L., Moutailler, S., Beck, C., Dumarest, M., Igual, J.M., Miranda, M.A., Viñas Torres, M., Picorelli, V., Gamble, A., Boulinier, T. 2019b. Infestation of small seabirds by Ornithodoros maritimus ticks: effects on chick body condition, reproduction and associated infectious agents. Ticks and Tick-borne Diseases https://doi.org/10.1016/j.ttbdis.2019.101281

Soanes, L., Bright, J., Carter, D., Dias, M., Fleming, T., Gumbs, K., Hughes, G., Mukhida, F., and Green, J. 2016. Important foraging areas of seabirds from Anguilla, Caribbean: implications for marine spatial planning. Mar. Policy 70: 85–92.

Wilson, R.P., Pütz, K., Peters, G., Culik, B., Scolaro, J.A., Charrassin, J.-B., and Ropert-Coudert, Y. 1997. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 1973-2006 25(1): 101–106.

16. Agradecimientos

Este trabajo ha sido posible gracias a la financiación obtenida por varios proyectos:

 Ayuda Ramón y Cajal a Ana Sanz Aguilar financiadas por el Ministerio de Innovación y Universidades, la Agencia Estatal de Investigación y el Fondo Social Europeo (RYC-2017- 22796).

Fundación Balearia nos facilitó los desplazamientos entre Baleares y la península.

Imágenes de la campaña 2023

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avancats IMEDEA (CSIC-UIB)

ANEXO 2

Croquis de las colonias

S

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

GENERALITAT VALENCIANA

parc natural de la serra gelada

> PEQUENA HOSAS 1-6

S

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

S

Grupo de Ecología y Demografía Animal Institut Mediterrani d'Estudis Avançats IMEDEA (CSIC-UIB)

760

Isla Mitjana

Publicaciones científicas

Article

Global assessment of marine plastic exposure risk for oceanic birds

Received: 12 December 2022

Accepted: 19 May 2023

Published online: 04 July 2023

Check for updates

A list of authors and their affiliations appears at the end of the paper

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and nonbreeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.

Plastic pollution harms marine life worldwide¹, alongside other threats including fishing, climate change and invasive species². Reports of entanglement and ingestion impacts are mounting^{1,3,4}, but there are large gaps in our understanding, including about factors affecting plastic encounter, ingestion rates, mortality and population-level impacts^{4,5}. Marine plastic is unevenly distributed⁶, accumulating in patches within ocean gyres and coastal regions^{7,8}, and often drifting thousands of kilometres in ocean currents^{8,9}. Likewise, marine life is patchily distributed¹⁰, and many species cross oceans and political boundaries^{11,12}. With plastic production and waste generation continuing to increase¹³, identifying at-risk species and populations is crucial for targeting conservation action and research^{14–16} because the vulnerability of populations relates to exposure to a hazard, sensitivity to damage that impacts survival or reproduction, and the resilience of the population¹⁷.

Many seabird species are sensitive to plastic pollution; they frequently ingest plastic¹, which can have lethal and sublethal impacts caused by chemical contamination¹⁸ and physical damage or blockages¹⁹. Numerous factors affect the amount of plastic accumulated by different species including foraging behaviour, at-sea distribution and gut morphology²⁰⁻²². Among seabirds, albatrosses and petrels can contain particularly high loads of plastic ingested directly or within their prey^{1,20}. Many species rarely regurgitate indigestible items, except when feeding their chicks²³. Petrels are particularly sensitive because they retain plastic for long periods due to their gut morphology²², and small species (e.g., storm-petrels and gadfly petrels) can suffer greater physical damage or higher metabolic costs from ingesting plastic relative to larger species⁵. Petrels are a diverse group of 123 wide-ranging species that inhabit all the world's oceans, making them good sentinels for ocean health². Many populations are

e-mail: bethany.louise.clark@gmail.com; ana.carneiro@birdlife.org; ejp69@cam.ac.uk

unlikely to be resilient to hazards because over half (64) are listed as globally Threatened or Near Threatened by the International Union for the Conservation of Nature (IUCN), including 16 Endangered and 12 Critically Endangered species². Moreover, we know little about the status of many of their populations or if they are impacted by plastic².

Assessing risk to petrel populations from plastic pollution requires a robust understanding of vulnerability to ingestion, for which exposure at sea is a key component¹⁴. Seabirds risk encountering plastic when they forage near sources associated with dense human populations²⁴, fisheries²⁵ and shipping lanes²⁶, or in mid-ocean gyres where floating debris accumulates^{27–29}. Exposure risk can be characterised by estimating contact between organisms and hazards, or their co-occurrence, and a key goal in ecological risk assessment is to consider variation in the amount of time spent by animals in different parts of their range^{30,31}. Plastic exposure risk has not been previously quantified using methods that account for the time spent in areas of different densities of plastic pollution, but lightweight tracking devices have recently provided unprecedented detail about the movements of petrels of all sizes³², including the time spent in different foraging areas and across the annual cycle³³.

Here, we estimate relative marine plastic exposure risk for 77 petrel species at a global scale by calculating the spatio-temporal overlap between modelled floating plastic density and the space-use of tracked birds¹⁴. To inform conservation action and future research, we compare exposure risk across populations, seasons (breeding and non-breeding), Exclusive Economic Zones (EEZ) and areas beyond national jurisdiction (the high seas), and found substantial variation. We identified areas of high risk of exposure to plastic debris in the Mediterranean and Black seas, the northeast Pacific, the northwest Pacific, the South Atlantic and the southwest Indian Ocean. Our results also reveal that Threatened species have greater exposure risk. Because marine debris and seabirds cross multiple political boundaries, our results emphasise that efforts to reduce the amount of plastic waste in the ocean should not only focus on areas of high exposure risk. Improved international cooperation and collaboration are needed to address this global threat.

Results and discussion

Plastic exposure risk for petrels

We analysed 1,736,880 tracked locations for 7137 adults of 77 petrel species (64% of species within Oceanitidae, Hydrobatidae and Procellariidae, excluding the two Macronectes species), from 148 populations in 27 countries and Antarctica, between 1995 and 2020 (mean = 2012). For each population, we calculated monthly 95% utilisation distributions (UDs) that estimate time spent by tracked petrels in 10 km grid cells (i.e., smoothed density of 12-hourly tracked locations; Fig. 1a), and combined monthly UDs into seasons (breeding or non-breeding). If data were available from multiple populations of a species, we created species UDs weighted by approximate population size. We calculated a geometric mean of global marine plastic densities estimated by three published models^{6,9,34} for micro- and macro-plastics (~0.333 mm-40 cm) combined for 2014 in 1×1° cells (Fig. 1b). We aggregated petrel UDs into 1×1° grid cells and created an all-species map by summing species UDs, weighting those tracked only in the breeding season and so not including the non-breeding part of the annual cycle at 0.5 (Fig. 1c). We divided the plastic and petrel grids by their respective cumulative sums so that the values of each global grid summed to one. We then multiplied each petrel UD by the plastic density to map spatial overlap as an indicator of estimated exposure risk¹⁴ (e.g., Figure 1d). Summing the values across cells provided an exposure risk score, which we multiplied by 10⁶ to provide an easy-touse scale; this gave us monthly population-level scores ranging from 0.0007 to 1091.

We ranked species by plastic exposure risk score (Fig. 2a), ranging from 0.003 to 549 (mean = 28.0; median = 4.9, interquartile range = 1.8-14.5). Of particular concern are the 19 species scoring over 15.3 (the score any species would receive if plastic was evenly distributed worldwide), indicating they mostly use areas with aboveaverage plastic density. These species include the Critically Endangered Balearic shearwater Puffinus mauretanicus and Newell's shearwater Puffinus newelli: the Endangered Hawaiian petrel Pterodroma sandwichensis; and the Vulnerable yelkouan shearwater Puffinus velkouan, Cook's petrel Pterodroma cookii and spectacled petrel Procellaria conspicillata (Fig. 2a). The proportion of total exposure risk within each IUCN Red List category differs from the proportion of tracked species within each category, with a greater percentage of the exposure risk shared among Threatened species, particularly Critically Endangered species (Fig. 2b). The 20 highest-scoring species had greatest plastic exposure risk in five areas, both in coastal regions (Mediterranean/Black Sea, northwest Pacific) and ocean gyres (northeast and northwest Pacific, South Atlantic, southwest Indian oceans; Figs. 1d, 2a). Plastic exposure risk was low in upwelling zones (Humboldt and Canary currents) and polar regions (Fig. 1d). For some species, scores differed greatly among populations (Fig. 2a). For example, European storm-petrels Hydrobates pelagicus breeding in the Mediterranean had much higher scores (306-534) than elsewhere (1.0-1.4; Supplementary Fig. 1). There was no long-term trend in exposure risk scores for populations tracked in the same months for more than three years (Supplementary Fig. 2). By using tracking data to estimate the relative density of regularised bird locations, instead of using only estimated presence or absence, we explicitly consider spatio-temporal variation in seabird distributions, thus providing more detail on global plastic exposure risk for a subset of species than an analysis based on range maps, which inferred different geographic hotspots of plastic exposure risk¹⁴.

Breeding and non-breeding season exposure risk

We calculated breeding and non-breeding plastic exposure risk scores for 107 populations of 60 species. The mean difference between seasons was 34.0, with little difference for most populations (median = 3.6), but substantial differences for some (maximum = 521.8; Fig. 3a). For example, Scopoli's shearwaters Calonectris diomedea breed on Malta in the Mediterranean and migrate to the eastern Atlantic Ocean where they had a much lower plastic exposure risk score (30.0) than during the breeding season (496.2). In contrast, yelkouan shearwaters also breed on Malta (517.5), but had a higher score during nonbreeding (937.7) when they disperse within the Mediterranean and migrate to the Black Sea (Fig. 3a-c). Seasonal contrasts also varied among populations of the same species. For example, scores for Cook's petrels during non-breeding were much higher for birds breeding in northern New Zealand that migrate to the northeast Pacific (159.3), than those breeding in southern New Zealand that migrate to the Humboldt Current (0.8; Fig. 3a, d, e).

Exposure risk and ingestion

Plastic exposure risk, as indicated by our scores, is necessary but not sufficient for ingestion to occur and there are not yet enough suitable samples to quantify this process for most species. The amount of ingested plastic detected in seabirds is affected by foraging style, body size, tendency to regurgitate, gut morphology, prey type, age and breeding stage^{20,22,23,28}. Few ingestion studies have used standardised protocols to sample different populations of the same species⁴. Furthermore, ingestion data are influenced by whether samples came from pellets²⁶ or regurgitates¹⁸, or necropsies of birds that were found dead at a colony²⁹ or on beaches³⁵, recovered after attraction to light pollution³⁶, bycaught in fisheries³⁷, or taken for research²⁸ or human consumption⁴. Nonetheless, studies that compared ingestion for different populations of the same species using the same methods control for these factors, and so can be compared to our exposure risk scores. For example, flesh-footed shearwaters *Ardenna carneipes*

Fig. 1 | **Mapping petrels and plastics. a** Species richness based on presence within 95% utilisation distributions isopleth contours from tracking data for 77 petrel species. Red diamonds indicate the colonies from which tracking data were obtained. **b** Plastic density at the ocean surface, showing the square root of the number of plastic pieces (-0.333 mm-0.4 m) estimated per km² in each 1 × 1° grid cell. For visualisation only, the values are capped at 10% due to extreme values. **c** Summed 95% utilisation distributions for all species, with species weighted equally if year-round tracks were available or by 0.5 if tracks were only available for the breeding season. If we had data from multiple populations for a species,

densities were weighted by approximate population size. **d** Exposure risk to plastic was calculated by multiplying the density value in each cell for plastics (scaled to sum to 1) by the value for petrels (scaled to sum to 1). For visualisation only, the values are capped at 1% due to extreme values, and all other values are shown on a linear scale. Black ellipses relate to the areas identified from the 20 species with the highest exposure risk scores (Fig. 2a). n = number. White = no data. Robinson Projection. Land polygons from Natural Earth. Source data for colony locations are provided as a Source Data file.

Plastic exposure risk scores for tracked petrels

Fig. 2 | **Plastic exposure risk scores for 77 petrel species. a** Species are ranked by exposure risk from the top-left to the bottom-right. Colours represent the location that contributed most to the score for the five areas of highest exposure risk. Where there are multiple populations per species (grey diamonds), the mean of all populations (black circles) is weighted by the population size. The vertical dashed line indicates the theoretical exposure risk score if plastic was uniformly distributed across all cells (15.3). Values in parentheses are the number of populations, followed

by 1 if the species was tracked in breeding and non-breeding seasons or by 0.5 if only tracked in one season. Two-letter codes indicate the IUCN Red List assessment threat category (Least Concern (LC; n = 36), Near Threatened (NT; 9), Vulnerable (VU; 16), Endangered (EN; 10), Critically Endangered (CR; 6)). **b** The percentage of tracked petrel species within each IUCN threat category and the percentage of total exposure risk attributed to species in each category. Source data are provided as a Source Data file.

sampled in eastern parts of their breeding range contained significantly more plastic²⁰, consistent with our higher scores during the non-breeding season for populations migrating to the northwest Pacific (New Zealand = 44.9; Lord Howe = 47.1) compared with those migrating to the eastern Indian Ocean (Western Australia = 13.6). Additionally, the Ecological Quality Objective for part of the North Sea target of <10% of northern fulmars *Fulmarus glacialis* containing ≥ 0.1 g of plastic was exceeded more in the North Sea than Arctic Canada³⁸, mirroring our exposure risk scores for those tracked from the UK (1.4) and Canada (0.25). There are clear examples of high ingested plastic loads in high exposure risk areas in the Mediterranean³⁷, northeast Pacific³⁹ and southwest Indian Ocean³⁶. However, plastic loads are both low and high in areas with low exposure risk⁴⁰, indicating that birds may still be at risk while foraging in marine areas with low estimated plastic densities. Plastic has been ingested even by the species with the lowest exposure risk score of 0.003 (4% of 27 sampled snow petrels Pagodroma nivea, which forage around Antarctica, contained plastic⁴⁰), indicating that the ubiquitous availability of plastic is concerning across all oceans worldwide, not only in areas where plastic aggregates.

Jurisdictions and policy

Plastic exposure risk for tracked petrels occurred mostly in the Mediterranean and Black Seas (Fig. 4a, b), where breeding European stormpetrels and Scopoli's, yelkouan and Balearic shearwaters are at risk, with high plastic loads recorded^{37,41}. Elsewhere, the high seas are used by 75 of our 77 tracked species, and accounted for 25% of global plastics exposure risk, mainly within oceanic gyres. The US EEZ accounted for a high proportion of the exposure risk, noticeably northeast of Hawai'i, followed by the EEZs of Japan, and the UK, mainly around the Overseas Territories of Tristan da Cunha and Bermuda (Fig. 4a, b). The New Zealand EEZ ranked highly despite low plastic levels due to the exceptionally high petrel occurrence and diversity. Moderate plastic exposure risk scores (0.15–1.00% of total) occurred in the EEZs of France, Australia, Brazil, Portugal, Mauritius, China, Russia, Argentina, Madagascar, Bahamas, and Mexico (Fig. 4a).

Our results indicate that mitigating plastic pollution in the breeding country's EEZ alone would not adequately protect most species throughout the annual cycle. We identified links between the countries within which each tracked petrel population breeds (including overseas territories) and the jurisdictions where those populations were exposed to plastic (Fig. 4c). Exposure risk primarily occurred outside the breeding country's EEZ (theoretical EEZ in the Mediterranean because actual EEZs are not clearly defined), except for 7 of the 29 highest-scoring populations (e.g., wedge-tailed shearwaters *Ardenna pacifica* in the USA, and streaked shearwaters *Calonectris leucomelas* in Japan). Of the 29 highest-scoring populations, 25 were exposed to plastic in multiple EEZs. For example, streaked shearwaters breeding in South Korea were exposed in China, Malaysia, the Philippines, South Korea, Indonesia and Vietnam (Fig. 4c). Exposure risk

Fig. 3 | **Season-specific plastic exposure risk scores. a** Scores during breeding (grey circles) and non-breeding seasons (black circles) for the 20 populations with the greatest differences between seasons (grey lines). **b** Non-breeding season plastic exposure risk for Scopoli's shearwaters (non-breeding score = 30.0, breeding season score = 496.24) and **c** yelkouan shearwaters (non-breeding = 937.7, breeding =517.5) for tracked from Malta, and for Cook's petrels breeding either at

d Te Hauturu-o-Toi/Little Barrier Island (non-breeding = 159.3, breeding = 5.5) or **e** Whenua Hou/Codfish Island (non-breeding = 0.8, breeding = 2.1). Black lines indicate the outline of the most used area in the non-breeding season (top 25% of the utilisation distribution). Land polygons from Natural Earth. Source data are provided as a Source Data file.

was greatest in the high seas for 15 of the 29 highest-scoring populations, particularly those breeding in the USA, New Zealand, UK, Brazil, Australia, France, and Mauritius (Fig. 4b). For each petrel population, we provide the percentage of exposure risk occurring in each EEZ and the high seas to facilitate targeting mitigation and policy efforts towards key areas (Supplementary Data 1).

Marine vertebrates and plastic debris are globally distributed and highly mobile, and cross political boundaries within and beyond national jurisdictions¹¹. Therefore, mitigating plastic pollution from marine and terrestrial sources will require efforts targeted across multiple jurisdictions and the high seas⁴². International cooperation, collaboration, resource mobilisation and information exchange are key to addressing marine plastic pollution⁴³ by limiting still-increasing plastic waste production¹³, improving waste management, and cleaning up existing plastic. The International Convention for the Prevention of Pollution from Ships (MARPOL) Annex V prohibiting plastic waste discharge from vessels entered into force 31st December 1988⁴⁴, but plastics from marine sources still affect seabirds²⁶ and account for at least 22% of ocean plastics⁴⁵. Ghost fishing gear is a priority because it presents deadly entanglement risk²⁵ and food web contamination after degradation at sea. Pollution from vessels could be reduced with more resources and incentives for monitoring and managing waste,

and enforcing MARPOL and local regulations, particularly among developing countries⁴⁶. A coordinated approach for plastic waste management could be achieved, for instance, through a global-scale treaty on plastics⁴³, which could operate in synergy with MARPOL and other relevant bodies and frameworks, such as the Convention on Biological Diversity, Convention on the Conservation of Migratory Species, Agreement on the Conservation of Albatrosses and Petrels, Regional Seas Conventions and Action Plans.

Research priorities

Greater use of standard methods for future ingestion studies would facilitate comparison and help identify the drivers of plastic ingestion^{4,47}. The relationship between exposure risk, ingestion and impact could be examined by concurrently sampling ingested plastic and tracking movements^{41,48}, and measuring physiological impacts. Interspecific differences could be clarified by systematically comparing plastic loads in species that have similar geographic ranges and exposure risk scores. Crucially, it is unclear for which species or populations plastic ingestion reduces survival or productivity and how much exposure they can tolerate; so, studies of population-level impacts and how to separate these from known causes of population declines will be vital^{2,5}. Four species with high plastic exposure risk

Fig. 4 | **Plastic exposure risk for petrels in different jurisdictions. a** Map of plastic exposure risk for 77 petrel species in the Exclusive Economic Zones (EEZs) of each country (including overseas territories) and the high seas (Areas Beyond National Jurisdiction). In the Mediterranean, theoretical EEZs are used. For visualisation only, the score is capped at 1% due to extreme values in the Mediterranean and Black Seas. b The percentage of plastic exposure risk score attributed to the high seas and each EEZ/theoretical EEZ accounting for >1% of total exposure risk, labelled with the number of tracked species using each area (values are provided in

Supplementary Table 1). **c** For the 29 petrel populations by country with the highest exposure risk scores (ranked from high to low), bars show the proportion of the exposure risk score in each jurisdiction that accounts for over 5% of the total exposure risk, with unlabelled bars containing all others. Bars are coloured according to b. Overlapping territorial claims are shown as claim 1/claim 2. MDG = Madagascar. Asterisks(*) indicate that the EEZ matches the breeding country. Land polygons from Natural Earth. Source data are provided as a Source Data file.

scores but no ingestion data in a recent review¹ are key research priorities: Hawaiian petrel and streaked shearwater within the main high-exposure risk areas, and Bermuda petrel *Pterodroma cahow* and Desertas petrel *Pterodroma deserta* elsewhere. Comparable ingestion data from different tracked populations of the same species with contrasting migration patterns (e.g., Cook's petrel; Fig. 3d, e) would be particularly valuable.

Our tracking data covered almost all of the world's oceans and all ocean regions within the ranges of 70% of analysed species, broadly matching seabird biodiversity in general¹⁰, but also reflecting known spatial biases in research effort, notably towards the Atlantic Ocean and latitudes south of 40°S³² (see Supplementary Table 2 for spatial coverage gaps). Our study included tracking data for all four petrel species that breed in the Mediterranean, but we identified 14 species that occur in other high-exposure risk areas, making them priorities for tracking studies (Supplementary Table 3). Additionally, both petrel tracking and ingestion data are sparse in coastal waters around east and southeast Asia, where high plastic densities occur, and the South Pacific and North Atlantic gyres, where moderate plastic densities occur^{10,32} (Fig. 1). We identified priority species for future research in each of these regions (Supplementary Table 4). Sample sizes varied substantially among species, from 3 to 960 individuals (median = 35, mean = 93), so additional tracking for some species could be beneficial (Supplementary Data 2). Furthermore, tracking immature birds or adults when deferring breeding could reveal differences in exposure risk³³. Our method could also be applied to global-scale, multi-species tracking datasets¹² for other marine megafauna, such as turtles and marine mammals, for which plastic pollution is also a threat¹.

Collecting more data on plastic density, identifying sources, and developing density models to provide better spatial coverage at a higher resolution would aid targeted mitigation strategies, and enable a better understanding of the effects of spatial scale on plastic exposure risk. The models that produced the plastic density estimates used in our analysis involved interpolating over wide areas, whereas observed plastic densities tend to be more patchy⁴⁹. There were limited plastic data, particularly for southeast Asia⁶, where a recent survey recorded high plastic levels⁵⁰. The South Pacific has a high petrel species richness, but few samples were used to inform the plastic density models6. The plastic density model estimates covered most of the Arctic and Antarctic oceans, but had more missing values near the poles than in other regions (Fig. 1b), although the Southern Ocean is not thought to contain much plastic⁶. However, plastic accumulates around Svalbard in the Arctic⁵¹, which although only important for northern fulmars among petrels, could affect other taxa. Marine species also feed at different depths and so it would be valuable to examine how plastic varies vertically⁵². Repeated plastic sampling across longer timescales would improve temporal matching between plastic and seabird data and allow investigations into long-term changes in plastic exposure risk⁵³. We provide example versions of the code used to produce our results to facilitate future research on different tracking or plastics datasets⁵⁴.

Methods

In brief, we collated tracking data for petrels and computed gridded utilisation distributions (UDs) at a monthly scale. We then combined gridded distributions of marine plastic density and multiplied them by the petrel UDs to map estimated exposure risk. For each map, we summed the plastic exposure risk values in all cells to provide a score representing relative estimated exposure risk. We combined maps and scores to investigate variation in exposure risk between breeding and non-breeding seasons, among populations and species, and across Exclusive Economic Zones (EEZs) and the high seas. Steps for processing and analysing the data are described in detail below and represented graphically in Supplementary Fig. 3. All data handling was carried out in R^{55} and R scripts are provided, along with example data and templates⁵⁴.

Petrel tracking data collation and processing

We collated tracking data that were collected using Global Positioning System (GPS) loggers, Platform Terminal Transmitters (PTTs) and Global Location Sensor (GLS) loggers deployed on adult petrels (Table S1; Oceanitidae, Hydrobatidae and Procellariidae). We searched for published and unpublished tracking data for all petrel species between March and August 2020, excluding the two giant petrel species Macronectes giganteus and M. halli because our analyses focused on marine areas and they regularly feed on land⁵⁶. We obtained data for 77 species (64% of the 121 target species) from the Seabird Tracking Database (www.seabirdtracking.org), ZoaTrack (www.zoatrack.org)⁵⁷, Movebank (www.movebank.org)58, and individual researchers (represented by authors of this study or detailed in the Supplementary Acknowledgements). We collated 1,736,880 tracked locations for 7137 individuals tracked from 27 countries and Antarctica. Datasets varied in terms of number of colonies per species, and numbers of individuals, years, and months tracked per population (Supplementary Data 2) and species (Supplementary Data 3).

We standardised tracking datasets to contain the following fields in the same format: latitude, longitude, datetime, species, colony name, colony latitude, colony longitude and device type. For GLS, we removed locations around the equinoxes (March equinox: -21, +7 days; September equinox: -7, +21 days) as they are unreliable⁵⁹, unless latitudes were estimated using additional information such as sea surface temperature prior to our analysis. For GPS and PTT data, we filtered locations for unrealistic speeds (>90 km/h), and visually checked maps and removed locations that were clear outliers. We removed locations within 5 km of the colony for GPS data or within 15 km of the colony for PTT data, but not for GLS locations due to large location error for these devices. We linearly interpolated and resampled GPS and PTT datasets to the sampling frequency for GLS of two locations per day.

We grouped data for each species into 148 breeding populations determined according to jurisdiction, the distance between colonies, and overlap in at-sea distributions based on the tracking data, i.e., if distributions overlapped substantially (at a $1 \times 1^{\circ}$ scale) and colonies are in close geographical proximity and in the same country, we considered colonies to belong to the same population.

Density of tracked petrel locations

For each population, we pooled all locations for all individuals across all years by month, and then removed months with fewer than five locations. For each month, we reprojected tracked locations onto a Lambert azimuthal equal area projection centred around the geometric mean of all locations. We estimated kernel densities of tracked locations to compute a 95% UD, a common home-range metric, which, because the sampling frequency was standardised, represented the estimated time spent by all tracked petrels in that population within that month. We used the adehabitatHR R package⁶⁰, using a cell size of 10 km² and a smoothing factor of 200 km (based on the magnitude of error in estimating locations from GLS³³). We trimmed all cells that fell over land (Natural Earth land 1:10 m polygons version 5.1.1 downloaded from www.naturalearthdata.com/) because these species do not forage in terrestrial environments and it is extremely rare for them to travel over land, so any locations are most likely due to device error³³. We then reprojected the resulting rasters back to a latitude and longitude projection (WGS84).

Of the 148 tracked populations, 108 (61 species) were tracked both in the breeding and non-breeding seasons. For these populations, we collated published information on the timing of breeding at a monthly scale (Supplementary Data 4) for each species or, where possible, each population. We also labelled months as breeding or nonbreeding based on the tracking data. Locations were not always available for all months, with March and September often excluded from GLS datasets due to the uncertainty in light-based geolocation around equinoxes. We first calculated the distance between each location at sea and the breeding colony. For each population, we calculated the mean distance from the colony for each month, and a mean of those monthly means. If the mean for a month was greater than the population-specific mean across all months or if no individuals travelled within 200 km (chosen due to the approximate 200 km error common when using GLS devices) of the colony, this month was classified as non-breeding. To ensure there was only one breeding and one non-breeding season, if the classification of one month differed from the previous and following months, it was reclassified. We used published values except in cases when a month was labelled as breeding, but the tracking data showed that the subset of tracked birds did not attend the colony during that month, in which case, we used the label identified by the distance-to-colony method. Breeding and non-breeding months, therefore, do not necessarily represent the general phenology of the species, but instead reflect the behaviour (distance from the colony) of the majority of tracked individuals in that month. A sensitivity analysis showed that plastic exposure risk scores calculated using published breeding schedules were highly correlated with those estimated using the tracking data, Kendall's tau = 0.98 (z = 13.879, p < 0.001) for the breeding season, and tau = 0.97 (z = 10.810, p < 0.001) for the non-breeding season.

Plastic density distribution

We used estimated global marine plastic density (count per km²) in $1 \times 1^{\circ}$ grid cells, from publicly available outputs from three published Lagrangian particle tracking models (Maximenko³⁴, Lebreton⁹, and van Sebille⁶). The model estimates combined floating micro and macroplastics from ~0.333 mm to 40 cm, with different size classes having similar estimated distributions⁷. Although petrels can ingest plastic flexible plastic pieces 40-60 cm long, they generally consume smaller pieces⁶¹. The three models estimated plastic density using records from ~12,000 surface trawls. They provided particularly good spatial coverage in the northeast Pacific, northwest Atlantic and Australian waters, but particularly poor coverage at the poles, the waters around Southeast Asia, the northwest Indian Ocean, and the South Pacific⁶. The models simulate the movement of plastic particles through multiple years and then create a static probability grid for a single time point (2014) based on where particles spent most time up until 2014 (equivalent to a utilisation distribution). We do not expect interannual variation in plastic distribution to be substantial in comparison to the spatial scale of between-season seabird movement because plastics travel passively, take decades to break down, and have been released throughout the study period. Each model uses the trawl data along with weather conditions, ocean circulation models, and plastic sources and sinks to inform the movement of plastic particles and predict the number of particles in each sampled and unsampled 1×1° grid cell. The Maximenko model assumes particles can wash ashore and originate from a uniform input across the ocean surface³⁴, the van Sebille model assumes no sinks for plastic and plastics originate at the coast⁶, and the Lebreton model assumes no sinks for plastic and plastics are sourced from river mouths9. None of the models incorporate sinking through the water column⁵², ingestion by marine organisms¹, or fragmentation processes. For each ocean basin and model, a prediction value was compared to observed plastic counts, providing regression coefficients used to scale the model plastics distribution and predict plastic concentrations within all cells⁶. Each model represents observed ocean plastic concentrations well⁶, with observations generally falling within 1-2 orders of magnitude around the model estimate. Further details on the methods used to model plastic density, including on how regression coefficients were used

We took the geometric mean (as opposed to the arithmetic mean) of the Maximenko³⁴, Lebreton⁹, and van Sebille⁶ models to avoid bias in our plastic density layer toward the highest estimate from any individual model because the models have log scale variability between their estimates. Additionally, because the ocean is in constant flux, concentrations at any given location are constantly changing⁵³, assuming a lognormal distribution of concentrations through time, the geometric mean will be a better estimate of the central tendency and closer to the median concentration than the arithmetic mean⁶⁴. The model outputs varied in spatial coverage in coastal and polar regions (Supplementary Fig. 4), and when one of the models did not have an estimate within a cell, we used the geometric mean of the other models, or the estimate from the only available model. If there was no estimate from any model, this was marked as NA, which occurred mostly in the Arctic and the Antarctic, and in some coastal areas where the marine area was less than the $1 \times 1^{\circ}$ grid size. The model outputs were centred around 180°E. Values in cells at 0-1°W were incorrectly estimated so these were imputed from the mean values in the three adjacent cells east and west (177-180°E and 1-4°W).

Plastic exposure risk scores

We aggregated the monthly 10×10 km petrel 95% UDs for each population³³ onto the same $1 \times 1^{\circ}$ global grid of the plastic density data. All petrel UDs and the plastic density grid were divided by the respective cumulative sum for each grid so that the values of each entire raster grid summed to one. We estimated exposure risk as the mathematical product of the petrel and the plastic values in each grid cell¹⁴. This gives equal weight to the number of plastic pieces in each cell and the density estimate for bird tracking locations in each cell. We assume that estimated density of bird tracking locations at equal time intervals is strongly related to the time spent at risk of exposure to plastic debris, because areas where seabirds spend more time are very likely to be where foraging is concentrated⁶⁵, as a result of arearestricted searching behaviour⁶⁶⁻⁶⁸. We then summed all cell values and multiplied all scores by 1,000,000 to reduce the number of decimal places to produce a single score for that month (ranging from 0.0007 to 1091). For comparison, we calculated a theoretical score of 15.3, which represents what the exposure risk score would be for any species if all global grid cells contained the mean plastic density (i.e., assuming that plastic was evenly distributed across the world's oceans). We combined monthly grids to produce grids for each population, breeding or non-breeding season (if data were available for non-breeding months) and species. Scores for each population are the mean of all tracked months, and scores for each season are the mean of all months in that season (Supplementary Data 5). We used the mean to allow comparison between species with different numbers of tracked months. Maps for most populations are in Supplementary Fig. 5. For the 33 species for which we had multiple tracked populations, we searched for published population estimates (Supplementary Data 6). We calculated species-level scores as the mean of scores for each population weighted by the population size and multiplied by 0.5 if the population was only tracked during the breeding season (Supplementary Data 7).

We tested how robust our results were in relation to population size estimates, sampling frequency and tracking year. Population estimates for some species have large uncertainty, so we tested the correlation between species-level scores calculated with and without weighting by population size using Kendall's tau because scores are not normally distributed. They were highly correlated (tau = 0.83; T=483, p<0.001), so our results are unlikely to be affected by uncertainty in population size estimates.

To investigate possible effects of sampling frequency, we reprocessed the tracking data without subsampling all datasets to 12-hourly intervals. We identified 44 populations for which all data were derived from GPS or PTT devices. For each track, we calculated the median interval between successive locations and recorded the maximum median for each population, and if this was less than 6 h, we regularised tracking locations at that frequency (intervals ranging from 1 min to 5 h, median = 1 h, mean = 82 min). We performed kernel density estimation with the higher-frequency datasets using a smaller 50 km smoothing factor³³ for the remaining 39 populations and used them to calculate exposure risk scores for each population. The scores estimated using the higher and lower resolution data were highly correlated (tau = 0.90, T = 703, p < 0.001), so we conclude that 12-hour sampling intervals and 200 km smoothing parameter are sufficient for a study of this scale.

Birds were tracked between 1995 and 2020 with a mean tracking year of 2012. Among the 148 populations, 139 (94%) were tracked within 5 years of 2014 (2009-2019), the year for which plastic density was estimated. Given petrels are long-lived and generally faithful to breeding sites⁶⁹ and foraging areas during both breeding and nonbreeding seasons⁷⁰⁻⁷³, we assumed that distributions were unlikely to vary substantially across the study period. Data on long-term trends in plastic ingestion by seabirds have not shown substantial increases during the study period^{27,74,75}. A subset of 13 populations had been tracked with geolocators for the same set of months across more than three years (Supplementary Fig. 2). For these, we calculated an exposure risk score for each year and then tested the effect of population and year using a generalised linear model with a Gamma distribution (due to positive continuous right-skewed response variable). We checked model fit by simulating residuals using the DHARMa R package⁷⁶.

We recorded the most recent IUCN Red List assessment threat category⁷⁷, where 36 species were Least Concern (LC), 9 Near Threatened (NT), 16 Vulnerable (VU), 10 Endangered (EN) and 6 Critically Endangered (CR). Red List status categories from the year each species was first tracked remained the same for 71 of the 77 species, and we used the most recent assessment for the 6 species for which changes have occurred. Three were genuine changes relating to altered threats or conservation action (Westland petrel Procellaria westlandica from VU in 2016 to EN in 2017; Chatham petrel from CR in 2008 to EN in 2009 to VU in 2015; yelkouan shearwater from LC in 2004 to NT in 2008 to VU in 2012), while three were not genuine changes because they related to improved evidence for assessment (flesh-footed shearwater from LC in 2012 to NT in 2016; streaked shearwater from LC in 2012 to NT in 2015; spectacled petrel from CR in 2005 to VU in 2007)^{77,78}. We calculated the proportion of the total of all exposure risk scores attributed to species in each threat category.

Spatial patterns in plastic exposure risk

We used the ranked species scores to identify global-scale high exposure risk areas by recording the region in which each species had the highest scores. We created an all-species map by summing results for each species, with those tracked in both breeding and nonbreeding seasons given a weight of 1, while the 16 species that were tracked only in the breeding season were given a weight of 0.5 to avoid undue bias towards breeding colonies. We also divided the all-species distribution grid by the cumulative sum so that all values sum to one and multiplied this by the plastic density grid to produce an exposure risk map. We then overlapped this all-species map with EEZs and the high seas, obtained as an open-source polygon layer⁷⁹. Because national jurisdictions in the Mediterranean are not yet clearly defined or are subject to dispute, we used theoretical EEZs, which are defined as 200 nautical miles from the coastline or the median point between two coastlines unless treaties and agreements have been submitted to the UN⁸⁰. We calculated the proportion of the global risk of exposure to plastic for all petrels in each EEZ/theoretical EEZ and in the high seas. For joint regimes and overlapping claims, the score was divided evenly between the involved sovereigns. To record the links between the breeding country and the jurisdictions of plastic exposure risk, we calculated the proportion of plastic exposure risk for each population by country in each EEZ/theoretical EEZ and in the high seas¹¹ (Supplementary Data 1).

Spatial coverage and research priorities

To assess spatial coverage and identify research priorities for tracked species, we compared the distribution of the tracking data for each species with the estimated range maps⁷⁷. We assessed whether major populations (>1% of the global population or 200 pairs) of each tracked petrel species were missing from any of 10 major ocean areas (NW/NE/SW/SE Atlantic, NW/NE/SW/SE Pacific, Indian or Southern Oceans) according to the SeaVoX Salt and Fresh Water Body Gazetteer (https://www.marineregions.org/). Our tracking data covered all ocean regions within the published estimated ranges of 54 of the 77 species considered (70%). Our data compilation also revealed the main gaps in coverage for the remaining 23 species (Supplementary Table 2).

To identify research priorities for high exposure risk areas identified in this study, we used range maps to identify species or populations for which tracking data were not included in this study, but range maps indicated they may overlap (Supplementary Table 3). We recorded ingestion frequency of occurrence as the percentage of individuals found to contain plastic and the number examined as reported in Kühn & van Franeker¹. We also carried out this process for areas for which plastic density is high and range maps showed that petrel species may use these areas, but no tracking data were available for our study (Supplementary Table 4).

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

The plastic exposure risk data generated in this study and the plastic density data used in this study are provided in the Supplementary Data files, available at https://github.com/BirdLifeInternational/petrelsplastics and have been deposited in the Zenodo database at https://doi. org/10.5281/zenodo.7852143. The seabird tracking data are available under restricted access because the data were collected for other purposes that vary between datasets and revealing the exact locations of sensitive species may put them at risk. Access can be obtained by making a request to the owners of each dataset using the mechanisms provided by each database. Zoatrack (https://zoatrack.org/) dataset IDs: 57, 93, 102-112, 159, 253, 254, 762, 817. Movebank (https://www. movebank.org/) dataset IDs: 944960474, 200628745, 241140274. SEA-TRACK (https://seapop.no/en/seatrack/) for relevant northern fulmar data. U.S. Geological Survey data release: https://doi.org/10.5066/ P9NTEXM6. Seabird Tracking Database (https://www.seabirdtracking. org/) dataset IDs: 434, 438, 439, 448, 466, 467, 506-511, 517, 518, 554, 555, 561, 571, 607, 609, 610, 627, 628, 634, 635, 637, 639, 658, 659, 662, 663, 667, 668, 670, 672-678, 683, 684, 686, 694-696, 704-706, 708-715, 736, 741, 783-786, 788, 789, 826, 827, 829-831, 836-842, 844, 854, 858-872, 879, 883-886, 888-893, 900, 945, 946, 949, 951-954, 959-963, 966, 967, 970-983, 986-998, 1004, 1028, 1029, 1031-1033, 1055-1061, 1081, 1083, 1084, 1086-1091, 1120, 1121, 1140-1142, 1233-1236, 1238, 1239, 1258, 1259, 1279, 1280, 1282, 1285-1289, 1298, 1314, 1317, 1326, 1343-1347, 1360-1362, 1375, 1386, 1401, 1404, 1409, 1410, 1413-1415, 1422-1425, 1440, 1443, 1449, 1452, 1453, 1460, 1461, 1463, 1481, 1482, 1485-1488, 1494, 1497-1500, 1520-1523, 1541, 1544, 1546, 1549-1551, 1553-1558, 1562-1570, 1574-1577, 1579-1582, 1585-1592, 1594-1600, 1602, 1603, 1606-1608, 1610, 1618, 1619, 1621-1625, 1630, 1665, 1668-1672, 1690, 1711-1717, 1738, 1908-1923,

2036–2038, 2042, 2044–2046–2049, 2051–2056, 2059, 2060, 2063–2066. Source data are provided with this paper.

Code availability

R code used to produce the analysis can be accessed at https://github. com/BirdLifeInternational/petrels-plastics with the version on the date of publication archived at https://zenodo.org/record/8033861⁵⁴.

References

- 1. Kühn, S. & van Franeker, J. A. Quantitative overview of marine debris ingested by marine megafauna. *Mar. Pollut. Bull.* **151**, 110858 (2020).
- Dias, M. P. et al. Threats to seabirds: a global assessment. *Biol.* Conserv. 237, 525–537 (2019).
- Ryan, P. G., Moore, C. J., van Franeker, J. A. & Moloney, C. L. Monitoring the abundance of plastic debris in the marine environment. *Philos. Trans. R. Soc. B Biol. Sci.* **364**, 1999–2012 (2009).
- 4. Provencher, J. F. et al. Quantifying ingested debris in marine megafauna: a review and recommendations for standardization. *Anal. Methods* **9**, 1454–1469 (2017).
- Senko, J. F. et al. Understanding individual and population-level effects of plastic pollution on marine megafauna. *Endanger. Species Res.* 43, 234–252 (2020).
- 6. van Sebille, E. et al. A global inventory of small floating plastic debris. *Environ. Res. Lett.* **10**, 124006 (2015).
- Eriksen, M. et al. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. *PLoS One* 9, e111913 (2014).
- van Sebille, E., England, M. H. & Froyland, G. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. *Environ. Res. Lett.* 7, 44040 (2012).
- Lebreton, L.-M., Greer, S. D. & Borrero, J. C. Numerical modelling of floating debris in the world's oceans. *Mar. Pollut. Bull.* 64, 653–661 (2012).
- Jenkins, C. N. & van Houtan, K. S. Global and regional priorities for marine biodiversity protection. *Biol. Conserv.* 204, 333–339 (2016).
- 11. Beal, M. et al. Global political responsibility for the conservation of albatrosses and large petrels. *Sci. Adv.* **7**, eabd7225 (2021).
- 12. Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. *Nature* **475**, 86–90 (2011).
- Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. *Science* **369**, 1515–1518 (2020).
- Wilcox, C., van Sebille, E. & Hardesty, B. D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. *Proc. Natl. Acad. Sci. USA* **112**, 11899–11904 (2015).
- Good, T. P., Samhouri, J. F., Feist, B. E., Wilcox, C. & Jahncke, J. Plastics in the Pacific: assessing risk from ocean debris for marine birds in the California current large marine ecosystem. *Biol. Con*serv. **250**, 108743 (2020).
- Provencher, J. F. et al. A horizon scan of research priorities to inform policies aimed at reducing the harm of plastic pollution to biota. *Sci. Total Environ.* **733**, 139381 (2020).
- 17. Van Straalen, N. M. Biodiversity of ecological responses in animals. *Netherlands J. Zool.* **44**, 1544–1556 (1994).
- Lavers, J. L., Bond, A. L. & Hutton, I. Plastic ingestion by Flesh-footed Shearwaters (*Puffinus carneipes*): Implications for fledgling body condition and the accumulation of plastic-derived chemicals. *Environ. Pollut.* **187**, 124–129 (2014).
- Roman, L., Hardesty, B. D., Hindell, M. A. & Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. *Sci. Rep.* 9, 3202 (2019).
- Roman, L., Bell, E., Wilcox, C., Hardesty, B. D. & Hindell, M. Ecological drivers of marine debris ingestion in Procellariiform Seabirds. *Sci. Rep.* 9, 916 (2019).
- Young, L. C., Vanderlip, C., Duffy, D. C., Afanasyev, V. & Shaffer, S. A. Bringing home the trash: do colony-based differences in foraging

distribution lead to increased plastic ingestion in Laysan Albatrosses? *PLoS One* **4**, e7623 (2009).

- 22. Ryan, P. G. How quickly do albatrosses and petrels digest plastic particles? *Environ. Pollut.* **207**, 438–440 (2015).
- 23. Rodríguez, A., Rodríguez, B. & Carrasco, M. N. High prevalence of parental delivery of plastic debris in Cory's Shearwaters (*Calonectris diomedea*). *Mar. Pollut. Bull.* **64**, 2219–2223 (2012).
- Lopes, C. S., de Faria, J. P., Paiva, V. H. & Ramos, J. A. Characterization of anthropogenic materials on yellow-legged gull (*Larus michahellis*) nests breeding in natural and urban sites along the coast of Portugal. *Environ. Sci. Pollut. Res.* 27, 36954–36969 (2020).
- 25. Bond, A. L. et al. Prevalence and composition of fishing gear debris in the nests of northern gannets (*Morus bassanus*) are related to fishing effort. *Mar. Pollut. Bull.* **64**, 907–911 (2012).
- 26. Phillips, R. A. & Waluda, C. M. Albatrosses and petrels at South Georgia as sentinels of marine debris input from vessels in the southwest Atlantic Ocean. *Environ. Int.* **136**, 105443 (2020).
- 27. van Franeker, J. A. & Law, K. L. Seabirds, gyres and global trends in plastic pollution. *Environ. Pollut.* **203**, 89–96 (2015).
- Spear, L. B., Ainley, D. G. & Ribic, C. A. Incidence of plastic in seabirds from the tropical Pacific, 1984-91: relation with distribution of species, sex, age, season, year and body weight. *Mar. Environ. Res.* 40, 123–146 (1995).
- 29. Lavers, J. L. & Bond, A. L. Ingested plastic as a route for trace metals in Laysan Albatross (*Phoebastria immutabilis*) and Bonin Petrel (*Pterodroma hypoleuca*) from Midway Atoll. *Mar. Pollut. Bull.* **110**, 493–500 (2016).
- Hope, B. K. An examination of ecological risk assessment and management practices. *Environ. Int.* 32, 983–995 (2006).
- Chow, T. E., Gaines, K. F., Hodgson, M. E. & Wilson, M. D. Habitat and exposure modelling for ecological risk assessment: a case study for the raccoon on the Savannah River Site. *Ecol. Modell.* 189, 151–167 (2005).
- 32. Bernard, A., Rodrigues, A. S. L., Cazalis, V. & Grémillet, D. Toward a global strategy for seabird tracking. *Conserv. Lett.* **14**, e12804 (2021).
- Carneiro, A. P. B. et al. A framework for mapping the distribution of seabirds by integrating tracking, demography and phenology. J. Appl. Ecol. 57, 514–525 (2020).
- 34. Maximenko, N., Hafner, J. & Niiler, P. Pathways of marine debris derived from trajectories of Lagrangian drifters. *Mar. Pollut. Bull.* **65**, 51–62 (2012).
- 35. Ryan, P. G. The incidence and characteristics of plastic particles ingested by seabirds. *Mar. Environ. Res.* **23**, 175–206 (1987).
- Cartraud, A. E., Le Corre, M., Turquet, J. & Tourmetz, J. Plastic ingestion in seabirds of the western Indian Ocean. *Mar. Pollut. Bull.* 140, 308–314 (2019).
- Codina-García, M., Militão, T., Moreno, J. & González-Solís, J. Plastic debris in Mediterranean seabirds. *Mar. Pollut. Bull.* 77, 220–226 (2013).
- 38. van Franeker, J. A. et al. Monitoring plastic ingestion by the Northern Fulmar *Fulmarus glacialis* in the North Sea. *Environ. Pollut.* **159**, 2609–2615 (2011).
- Kain, E. C., Lavers, J. L., Berg, C. J., Raine, A. F. & Bond, A. L. Plastic ingestion by Newell's (*Puffinus newelli*) and Wedge-tailed Shearwaters (*Ardenna pacifica*) in Hawaii. *Environ. Sci. Pollut. Res.* 23, 23951–23958 (2016).
- 40. van Franeker, J. A. & Bell, P. J. Plastic ingestion by petrels breeding in Antarctica. *Mar. Pollut. Bull.* **19**, 672–674 (1988).
- De Pascalis, F. et al. The hidden cost of following currents: microplastic ingestion in a planktivorous seabird. *Mar. Pollut. Bull.* 182, 114030 (2022).
- 42. Tiller, R. & Nyman, E. Ocean plastics and the BBNJ treaty—is plastic frightening enough to insert itself into the BBNJ treaty, or do we need to wait for a treaty of its own? *J. Environ. Stud. Sci.* **8**, 411–415 (2018).

Article

- Borrelle, S. B. et al. Why we need an international agreement on marine plastic pollution. *Proc. Natl. Acad. Sci. USA* **114**, 9994–9997 (2017).
- Hagen, P. E. International community confronts plastics polluting from ships: MARPOL Annex V and the problem that won't go away. *Am. Univ. Int. Law Rev.* 5, 425–496 (1990).
- Morales-Caselles, C. et al. An inshore–offshore sorting system revealed from global classification of ocean litter. *Nat. Sustain.* 4, 484–493 (2021).
- Karim, S. Implementation of the MARPOL convention in developing countries. Nord. J. Int. Law 79, 303–337 (2010).
- 47. Provencher, J. F. et al. Recommended best practices for plastic and litter ingestion studies in marine birds: collection, processing, and reporting. *Facets* **4**, 111–130 (2019).
- Hyrenbach, K. D. et al. Plastic ingestion by Black-footed Albatross *Phoebastria nigripes* from Kure Atoll, Hawai'i: linking chick diet remains and parental at-sea foraging distributions. *Mar. Ornithol.* 45, 225–236 (2017).
- Goldstein, M. C., Titmus, A. J. & Ford, M. Scales of spatial heterogeneity of plastic marine debris in the northeast Pacific Ocean. *PLoS One* 8, e80020 (2013).
- Tanhua, T., Gutekunst, S. B. & Biastoch, A. A near-synoptic survey of ocean microplastic concentration along an around-the-world sailing race. *PLoS One* **15**, e0243203 (2020).
- Cózar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. *Sci. Adv.* 3, e1600582 (2017).
- Egger, M., Sulu-Gambari, F. & Lebreton, L. First evidence of plastic fallout from the North Pacific Garbage Patch. *Sci. Rep.* **10**, 7495 (2020).
- Wilcox, C., Hardesty, B. D. & Law, K. L. Abundance of floating plastic particles is increasing in the western North Atlantic Ocean. *Environ. Sci. Technol.* 54, 790–796 (2020).
- Clark, B. L., Pearmain, E. J., Carneiro, A. P. B., Cowger, W. & Dias, M. P. Code and data: global assessment of marine plastic exposure risk for oceanic birds. https://doi.org/10.5281/zenodo. 7852143 (2023).
- R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2021).
- Granroth-Wilding, H. M. V. & Phillips, R. A. Segregation in space and time explains the coexistence of two sympatric sub-Antarctic petrels. *Ibis* 161, 101–116 (2019).
- 57. Dwyer, R. G. et al. An open web-based system for the analysis and sharing of animal tracking data. *Anim. Biotelemetry* **3**, 1–11 (2015).
- Kranstauber, B. et al. The Movebank data model for animal tracking. Environ. Model. Softw. 26, 834–835 (2011).
- Hill, R. D. & Braun, M. J. Geolocation by light level. *In:* electronic tagging and tracking in marine fisheries (eds. Sibert, J. R. & Nielsen, J. L.) 315–330 (Springer, 2001).
- Calenge, C. The package 'adehabitat' for the R software: a tool for the analysis of space and habitat use by animals. *Ecol. Modell.* 197, 516–519 (2006).
- Rodríguez, A., Ramírez, F., Carrasco, M. N. & Chiaradia, A. Seabird plastic ingestion differs among collection methods: examples from the short-tailed shearwater. *Environ. Pollut.* 243, 1750–1757 (2018).
- Ruiz-Orejón, L. F., Sardá, R. & Ramis-Pujol, J. Floating plastic debris in the Central and Western Mediterranean Sea. *Mar. Environ. Res.* 120, 136–144 (2016).
- 63. Thiel, M. et al. Impacts of marine plastic pollution from continental coasts to subtropical gyres—fish, seabirds, and other vertebrates in the SE Pacific. *Front. Mar. Sci.* **5**, 238 (2018).
- Niku, S., Samaniego, F. J. & Schroeder, E. D. Discharge standard based on geometric mean. J. Water Pollut. Control Fed. 53, 471–473 (1981).

- 65. Warwick-Evans, V. et al. Time-in-area represents foraging activity in a wide-ranging pelagic forager. *Mar. Ecol. Prog. Ser.* **527**, 233–246 (2015).
- Fauchald, P. & Tveraa, T. Using first-passage time in the analysis of area restricted search and habitat selection. *Ecology* 84, 282–288 (2003).
- 67. Paiva, V. H., Geraldes, P., Ramírez, I., Garthe, S. & Ramos, J. A. How area restricted search of a pelagic seabird changes while performing a dual foraging strategy. *Oikos* **119**, 1423–1434 (2010).
- Clay, T. A., Oppel, S., Lavers, J. L., Phillips, R. A. & Brooke, M. D. L. Divergent foraging strategies during incubation of an unusually wide-ranging seabird, the Murphy's petrel. *Mar. Biol.* 166, 8 (2019).
- Bried, J. & Jouventin, P. Site and mate choice in seabirds: an evolutionary approach. *In:* Biology of Marine Birds (eds. Schreiber, E. A. & Burger, J.) 263–305 (CRC Press, 2002).
- Ramírez, I. et al. Conservation implications of consistent foraging and trophic ecology in a rare petrel species. *Anim. Conserv.* 19, 139–152 (2016).
- 71. Delord, K. et al. Individual consistency in the non-breeding behavior of a long-distance migrant seabird, the grey petrel *Procellaria cinerea*. *Mar. Ornithol.* **47**, 93–103 (2019).
- Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory's shearwaters *Calonectris diomedea*. *Mar. Ecol. Prog. Ser.* **378**, 259–267 (2009).
- 73. Raymond, B. et al. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds. *PLoS One* **5**, e10960 (2010).
- Ryan, P. G. Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans. *Mar. Pollut. Bull.* 56, 1406–1409 (2008).
- Ryan, P. G., Pichegru, L., Perold, V. & Moloney, C. Monitoring marine plastics—will we know if we're making a difference? S. Afr. J. Sci. 116, #7678 (2020).
- Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/ mixed) regression models. R package version 0.2.7. https://CRAN. R-project.org/package=DHARMa (2020).
- 77. BirdLife International. IUCN red list for birds [WWW Document]. URL. http://www.birdlife.org, Accessed date: 7 June 2021 (2019).
- Butchart, S. H. M. et al. Measuring global trends in the status of biodiversity: red list indices for birds. *PLoS Biol.* 2, e383 (2004).
- Flanders Marine Institute. Maritime boundaries geodatabase: maritime boundaries and exclusive economic zones (200NM), version
 Available online at https://www.marineregions.org/10.14284/ 386. (2019).
- MedPAN & SPA/RAC. The 2016 status of Marine Protected Areas in the Mediterranean. (eds. Meola B. & Webster C.) SPA/RAC & Med-PAN. Tunis (2019).

Acknowledgements

B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative's Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author contributions

A.P.B.C., E.J.P., T.A.C., A.M., R.A.P., C.H. and M.P.D. conceived the study. B.L.C., A.P.B.C., E.J.P., T.A.C., A.M., R.A.P., and M.P.D. designed the methods. B.L.C., M.-M.R., E.J.P., and T.A.C. processed the petrel tracking data. W.C. and M.E. processed the plastic density data. B.L.C. analysed the data and produced the figures and tables. B.L.C., A.P.B.C., E.J.P., M.-M.R., T.A.C., W.C., A.M., R.A.P., C.H., J.L.L. and M.P.D. drafted the
manuscript. T.A.C., R.A.P., J.G.-S., J.A., Y.V.A.-B., J.A.-S., M.S.A., D.T.A., J.M.A., J.P.Y.A., N.J.P.B., C.B., A.M.B., J.Be., E.A.B., D.G.B., M.Be., M.Bi., O.K.B., M.Bo., K.A.B.J., J.J.B., K.B., V.B., J.Br., J.V.B., M.deL.B., K.C.B., L.B., L.Cal., L.Cam., M.J.C., R.D.C., N.C., A.R.C., P.C., T.C., J.G.C., F.R.C., Y.C., C.-Y.C., M.C.-B., R.H.C., J.B.C., V.C., B.C.C., J.D., F.DeP., Z.D., N.D., G.Dell'O., K.D., S.D., B.J.Di., H.A.D., J.Du., B.J.Du., L.M.E., A.I.F., A.L.F., J.J.F., J.H.F., A.N.D.F., A.F., G.G., D.Ga., C.G., I.S.G.C.G., M.G.F., J.P.G., W.J.G., D.Gr., T.G., G.T.H., L.R.H., E.S.H., A.H., M.H., H.H.H., L.M.H., H.F.R.H., M.H.-M., M.A.H., P.J.H., S.I., A.J., M.J., P.G.R.J., C.G.J., C.W.J., J.E.J., A.K., S.K., Y.Ki., H.K., Y.Ko., P.L.K., L.K., P.L., T.J.L., J.L.L., M.LeC., A.L., M.L., J.M., M.M., M.L.M., J.F.M., B.M., S.M., F.Mc.D., L.McF.T., F.M., B.J.M., T.M., W.A.M., R.C.M., L.N.-H., V.C.N., D.G.N., M.A.C.N., K.N., S.O., D.O., E.O., O.P., V.H.P., D.P., J.M.P., C.P., M.V.P., A.deP., A.T.M.P., P.P., P.A.P., I.L.P., B.J.P., T.A.P., C.D.L.P., C.B.P., J.P.-C., P.Q., J.L.Q., A.F.R., H.R., I.R., J.A.R., R.R., A.Ra., M.J.R., T.A.R., G.J.Rob., G.J.Roc., D.P.R., R.A.R., A.Ro., D.R., K.R., A.Ru., J.C.R., P.G.R., S.Sa., A.S.-A., M.S-S., Y.G.S., K.S., W.C.S., S.Sc., S.A.S., N.S., A.S., D.S., I.A.S., M.C.S., A.E.S., C.S., H.S., C.A.S., A.T., V.R.V.T., G.A.T., R.J.T., D.R.T., P.M.T., T.L.T., D.V.-S., E.V., E.D.W., S.M.W., H.W., H.U.W., T.Y., K.Y., C.B.Z., F.J.Z., and M.P.D. provided petrel tracking data and contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-38900-z.

Correspondence and requests for materials should be addressed to Bethany L. Clark, Ana P. B. Carneiro or Elizabeth J. Pearmain.

Peer review information *Nature Communications* thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2023

Bethany L. Clark ¹ , Ana P. B. Carneiro ¹, Elizabeth J. Pearmain ^{1,2,3}, Marie-Morgane Rouyer ⁴, Thomas A. Clay (9^{5,6,7}, Win Cowger (9⁸, Richard A. Phillips³, Andrea Manica (9², Carolina Hazin^{1,9}, Marcus Eriksen¹⁰, Jacob González-Solís 11,12, Josh Adams¹³, Yuri V. Albores-Barajas 14,15, Joanna Alfaro-Shigueto^{16,17,18}, Maria Saldanha Alho ¹⁹, Deusa Teixeira Araujo²⁰, José Manuel Arcos ²¹, John P. Y. Arnould²², Nadito J. P. Barbosa²⁰, Christophe Barbraud²³, Annalea M. Beard 1^{24,25}, Jessie Beck 1²⁶, Elizabeth A. Bell 1²⁷, Della G. Bennet 1²⁸, Maud Berlincourt²², Manuel Biscoito ¹²⁹, Oskar K. Bjørnstad³⁰, Mark Bolton³¹, Katherine A. Booth Jones³², John J. Borg 1³³, Karen Bourgeois^{34,35}, Vincent Bretagnolle²³, Joël Bried 1³⁶, James V. Briskie²⁸, M. de L. Brooke², Katherine C. Brownlie²², Leandro Bugoni ³⁷, Licia Calabrese ^{38,39,40}, Letizia Campioni ¹⁹, Mark J. Carey⁴¹, Ryan D. Carle²⁶, Nicholas Carlile ⁴², Ana R. Carreiro ^{43,44}, Paulo Catry ¹⁹, Teresa Catry ⁴⁵, Jacopo G. Cecere ⁴⁶, Filipe R. Ceia⁴³, Yves Cherel ²³, Chang-Yong Choi ⁴⁷, Marco Cianchetti-Benedetti⁴⁸, Rohan H. Clarke ⁴⁹, Jaimie B. Cleeland ()^{50,51}, Valentina Colodro⁵², Bradley C. Congdon⁵³, Jóhannis Danielsen ()⁵⁴, Federico De Pascalis ⁶^{46,55}, Zoe Deakin ^{25,56}, Nina Dehnhard ^{57,58}, Giacomo Dell'Omo ⁴⁸, Karine Delord²³, Sébastien Descamps ()⁵⁹, Ben J. Dilley⁶⁰, Herculano A. Dinis²⁰, Jerome Dubos⁶¹, Brendon J. Dunphy⁶², Louise M. Emmerson⁵¹, Ana Isabel Fagundes⁶³, Annette L. Fayet ^{57,64}, Jonathan J. Felis^{13,65}, Johannes H. Fischer ^{38,66}, Amanda N. D. Freeman ⁶⁷, Aymeric Fromant^{22,23}, Giorgia Gaibani⁶⁸, David García⁶⁹, Carina Gjerdrum ⁷⁰, Ivandra Soeli Gonçalves Correia Gomes²⁰, Manuela G. Forero⁷¹, José P. Granadeiro ⁷², W. James Grecian ⁷³, David Grémillet ^{4,60}, Tim Guilford⁶⁴, Gunnar Thor Hallgrimsson⁷⁴, Luke R. Halpin ^{75,76}, Erpur Snær Hansen ⁷⁷, April Hedd 178, Morten Helberg^{79,80}, Halfdan H. Helgason⁸¹, Leeann M. Henry²⁴, Hannah F. R. Hereward 125,82, Marcos Hernandez-Montero⁸³, Mark A. Hindell ⁵⁰, Peter J. Hodum⁸⁴, Simona Imperio ^{46,85}, Audrey Jaeger ⁶¹, Mark Jessopp ^{86,87}, Patrick G. R. Jodice ⁸⁸, Carl G. Jones^{89,90}, Christopher W. Jones ⁶⁰, Jón Einar Jónsson ⁹¹, Adam Kane⁹², Sven Kapelj⁹³, Yuna Kim⁹⁴, Holly Kirk 🕲 ⁹⁵, Yann Kolbeinsson 🕲 ⁹⁶, Philipp L. Kraemer⁹⁷, Lucas Krüger 🕲 ^{98,99}, Paulo Lago (21,100, Todd J. Landers^{35,101}, Jennifer L. Lavers (21,002, Matthieu Le Corre⁶¹, Andreia Leal²⁰, Maite Louzao¹⁰³, Jeremy Madeiros¹⁰⁴, Maria Magalhães¹⁰⁵, Mark L. Mallory ¹⁰⁶, Juan F. Masello⁹⁷, Bruno Massa¹⁰⁷, Sakiko Matsumoto¹⁰⁸, Fiona McDuie 109, Laura McFarlane Tranquilla¹¹⁰, Fernando Medrano 11,12, Benjamin J. Metzger 100, Teresa Militão 🕲 ^{11,12}, William A. Montevecchi¹¹¹, Rosalinda C. Montone 🕲 ¹¹², Leia Navarro-Herrero 🕲 ^{11,12}, Verónica C. Neves ^{36,113}, David G. Nicholls¹¹⁴, Malcolm A. C. Nicoll¹¹⁵, Ken Norris¹¹⁶, Steffen Oppel ⁵⁶, Daniel Oro¹¹⁷, Ellie Owen^{118,119}, Oliver Padget⁶⁴, Vítor H. Paiva 1⁴³, David Pala¹²⁰, Jorge M. Pereira⁴³, Clara Péron 1²¹, Maria V. Petry 1²², Admilton de Pina²⁰, Ariete T. Moreira Pina¹²³, Patrick Pinet¹²⁴, Pierre A. Pistorius¹²⁵, Ingrid L. Pollet (10⁶), Benjamin J. Porter²⁵, Timothée A. Poupart (12²), Christopher D. L. Powell¹²⁶, Carolina B. Proaño¹²⁷, Júlia Pujol-Casado^{11,12}, Petra Quillfeldt⁹⁷, John L. Quinn¹²⁸, Andre F. Raine¹²⁹, Helen Raine¹²⁹, Iván Ramírez¹³⁰, Jaime A. Ramos (14), Raül Ramos (11,12), Andreas Ravache¹³¹, Matt J. Rayner (132), Timothy A. Reid¹³³, Gregory J. Robertson (134), Gerard J. Rocamora^{38,40}, Dominic P. Rollinson⁶⁰, Robert A. Ronconi⁷⁰, Andreu Rotger (135), Diego Rubolini (136,137), Kevin Ruhomaun¹³⁸, Asunción Ruiz¹³⁹, James C. Russell³⁵, Peter G. Ryan (14), Katsufumi Sato (14), Wiebke C. Schäfer (11,12), Ana Sanz-Aguilar^{135,140}, Mariona Sardà-Serra^{11,12}, Yvan G. Satgé (141), Katsufumi Sato (142), Wiebke C. Schäfer (17), Stefan Schoombie (140), Scott A. Shaffer (143), Nirmal Shah¹⁴⁴, Akiko Shoji (145), Dave Shutler¹⁰⁶, Ingvar A. Sigurðsson¹⁴⁶, Mónica C. Silva¹⁴⁷, Alison E. Small²⁴, Cecilia Soldatini (148), Hallvard Strøm⁵⁹, Christopher A. Surman¹⁴⁹, Akinori Takahashi (150), Vikash R. V. Tatayah⁸⁹, Graeme A. Taylor (151), Robert J. Thomas²⁵, David R. Thompson¹⁵², Paul M. Thompson¹⁵³, Thorkell L. Thórarinsson⁹⁶, Diego Vicente-Sastre (11,12), Eric Vidal (154,155), Ewan D. Wakefield⁷³, Susan M. Waugh¹, Henri Weimerskirch²³, Heiko U. Wittmer (156), Takashi Yamamoto¹⁵⁷, Ken Yoda (158), Carlos B. Zavalaga (159), Francis J. Zino¹⁶⁰ & Maria P. Dias (1,147,161)

¹BirdLife International, Cambridge, UK. ²Department of Zoology, University of Cambridge, Cambridge, UK. ³British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.⁴CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.⁵Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA. ⁶People and Nature, Environmental Defense Fund, Monterey, CA, USA. ⁷School of Environmental Sciences, University of Liverpool, Liverpool, UK. ⁸University of California, Riverside, CA, USA. ⁹The Nature Conservancy, London, UK. ¹⁰5 Gyres Institute, Los Angeles, CA, USA. ¹¹Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain. 12 Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain. ¹³U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station, Santa Cruz, CA, USA. ¹⁴Universidad Autonoma de Baja California Sur - UABCS, La Paz, Mexico. 15 Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico. 16 Carrera de Biologia Marina, Universidad Cientifica del Sur, Lima, Peru. ¹⁷ProDelphinus, Lima, Peru. ¹⁸University of Exeter, School of Biosciences, Cornwall Campus, Exeter, UK. ¹⁹MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Ispa - Instituto Universitário, Lisbon, Portugal. ²⁰Associação Projecto Vitó, São Filipe, Cabo Verde. ²¹SEO/BirdLife, Barcelona, Spain.²²Deakin University, Burwood, VIC, Australia.²³Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, Villiers-en-Bois, France. ²⁴St. Helena Government, Jamestown, St. Helena, UK. ²⁵Cardiff University, Cardiff, UK. ²⁶Oikonos Ecosystem Knowledge, Santa Cruz, CA, USA. ²⁷Wildlife Management International Ltd, Blenheim, New Zealand. ²⁸School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. ²⁹Marine and Environmental Sciences Centre (MARE), Museu de História Natural do Funchal, Funchal, Portugal. ³⁰Skudeneshavn, Norway. ³¹RSPB Centre for Conservation Science, Aberdeen, UK. ³²British Trust for Ornithology, Belfast, UK. ³³National Museum of Natural History, Mdina, Malta. ³⁴3 Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Nouméa, New Caledonia, France. ³⁵School of Biological Sciences, University of Auckland, Auckland, New Zealand. ³⁶Institute of Marine Sciences - OKEANOS, University of the Azores, 9901-862 Horta, Portugal. ³⁷Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil. ³⁸Island Conservation Society, Mahé, Seychelles. ³⁹Université Pierre et Marie Curie, Paris, France. ⁴⁰Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles. ⁴¹Department of Environmental Management and Ecology, La Trobe University, Wodonga, NSW, Australia. ⁴²Science, Economics and Insights Division, Department of Planning and Environment, Sydney, Australia. 43 University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Coimbra, Portugal. 44CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de Vairão, Fornelo e Vairão, Portugal. 45 CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal, ⁴⁶Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy.⁴⁷Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, South Korea. ⁴⁸Ornis Italica, Rome, Italy. ⁴⁹School of Biological Sciences, Monash University, Melbourne, VIC, Australia. ⁵⁰Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia. ⁵¹Australian Antarctic Division, Kingston, TAS, Australia. ⁵²Oikonos Ecosystem Knowledge, Valparaiso, Chile. ⁵³College of Science and Engineering, James Cook University, Cairns, Australia. ⁵⁴Faroe Marine Research Institute, Tórshavn, Faroe Islands. ⁵⁵Department of Environmental Science and Policy, University of Milan, Milan, Italy. ⁵⁶RSPB Centre for Conservation Science, Cambridge, UK. ⁵⁷Norwegian Institute for Nature Research (NINA), Trondheim, Norway. 58 Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp, Belgium. ⁵⁹Norwegian Polar Institute, Tromsø, Norway. ⁶⁰FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa. ⁶¹UMR ENTROPIE, Université de la Réunion, Saint-Denis, Réunion, France. ⁶²Institute of Marine Sciences/School of Biological Sciences, University of Auckland, Auckland, New Zealand. ⁶³SPEA, Lisbon, Portugal.⁶⁴Department of Biology, University of Oxford, Oxford, UK. ⁶⁵United States Geological Survey, Santa Cruz, CA, USA. ⁶⁶Aquatic Unit, Department of Conservation, Wellington, New Zealand. ⁶⁷Nature North, Malanda, QLD, Australia.⁶⁸LIPU-BirdLife Italy, Parma, Italy.⁶⁹Iniciativa de Recerca de la Biodiversitat de les Illes (IRBI), Pina, Spain.⁷⁰Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada. ⁷¹Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.⁷²Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa & CESAM - Centre for Environmental and Marine Studies, Lisboa, Portugal. ⁷³Department of Geography, Durham University, Durham, UK. ⁷⁴Department of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland. ⁷⁵Monash University, Clayton, VIC, Australia. ⁷⁶Halpin Wildlife Research, Vancouver, BC, Canada. ⁷⁷South Iceland Nature Research Centre, Vestmannaeyjar, Iceland. ⁷⁸Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NC, Canada. ⁷⁹Østfold University College, Halden, Norway. ⁸⁰BirdLife Norway, Sandgata 30 B, 7012 Trondheim, Norway. ⁸¹East Iceland Nature Research Centre, Egilsstaðir, Iceland. ⁸²British Trust for Ornithology Cymru, Thoday Building, Deiniol Road, Bangor, Wales, UK. ⁸³Associação Projeto Biodiversidade, Santa Maria, Ilha do Sal, Cabo Verde.⁸⁴Oikonos Ecosystem Knowledge, Tacoma, WA, USA.⁸⁵Institute of Geosciences and Earth Resources, CNR, Pisa, Italy. 86School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland. 87MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland. 88 U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, SC, USA.⁸⁹Mauritian Wildlife Foundation, Vacoas, Mauritius.⁹⁰Durrell Wildlife Conservation Trust, Trinity, Jersey.⁹¹University of Iceland's Research Center at Snæfellsnes, Stykkishólmur, Iceland. ⁹²University College Dublin, Dublin, Ireland. ⁹³Association Biom, Zagreb, Croatia. ⁹⁴Macquarie University, Sydney, Australia.⁹⁵RMIT University, Melbourne, Australia.⁹⁶Northeast Iceland Nature Research Centre, Húsavík, Iceland.⁹⁷Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany.⁹⁸Instituto Antártico Chileno, Punta Arenas, Chile.⁹⁹Instituto Milénio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Santiago, Chile. ¹⁰⁰BirdLife Malta, Ta' Xbiex, Malta. ¹⁰¹Auckland Council, Auckland, New Zealand. ¹⁰²Tialtiraak Native Title Aboriginal Corporation, Esperance, WA, Australia. ¹⁰³AZTI, Pasaia, Spain. ¹⁰⁴Dept. of Environment and Natural Resources, Bermuda Government, Flatts, Bermuda. ¹⁰⁵Regional Directorate for Marine Policies, Azores Government, Horta, Azores, Portugal. ¹⁰⁶Acadia University, Wolfville, NS, Canada. ¹⁰⁷Department of Agriculture, Food and Forest Sciences, University of Palermo, Palermo, Italy. ¹⁰⁸Nagoya University, Nagoya, Japan. ¹⁰⁹San Jose State University Research Foundation, San Jose, CA, USA.¹¹⁰Birds Canada, Sackville, NB, Canada.¹¹¹Memorial University of Newfoundland and Labrador, St. John's, Canada.¹¹²Universidade de São Paulo - Instituto Oceanográfico, São Paulo, Brazil.¹¹³IMAR Instituto do Mar, Universidade dos Açores, Horta, Portugal. ¹¹⁴Chisholm Institute, Dandenong, Australia.¹¹⁵Institute of Zoology, Zoological Society of London, London, UK. ¹¹⁶Natural History Museum, London, UK. ¹¹⁷CEAB-CSIC, Centre d'Estudis Avançats de Blanes, Blanes, Spain.¹¹⁸RSPB Centre for Conservation Science, Inverness, UK.¹¹⁹The National Trust for Scotland, Balnain House, Huntly Street, Inverness, UK. ¹²⁰Parco naturale Regionale di Porto Conte, Alghero, Italy. ¹²¹Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA) - Muséum national d'Histoire Naturelle (MNHN), CNRS, IRD, SU, UCN, UA, Paris, France.¹²²Universidade do Vale do Rio dos Sinos - UNISINOS, São Leopoldo, Brazil.¹²³Project Vitó Association, Praia, Cabo Verde.¹²⁴Université de La Réunion, Saint-Denis, Réunion, France.¹²⁵Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa. ¹²⁶Albany, WA, Australia.¹²⁷Max Planck Institute for Ornithology, Puerto Ayora, Galapagos Islands, Ecuador.¹²⁸School of BEES, University College Cork, Cork, Ireland. ¹²⁹Archipelago Research and Conservation, Kalaheo, HI, USA. ¹³⁰Convention on Migratory Species (CMS), Bonn, Germany. ¹³¹UMR ENTROPIE (IRD, Université de La Réunion, CNRS, Université de La Nouvelle-Calédonie, Ifremer), Centre IRD Nouméa, Nouméa, New Caledonia, France. ¹³²Auckland War Memorial Museum, Auckland, New Zealand.¹³³CSIRO Oceans and Atmosphere, Hobart, NSW, Australia.¹³⁴Environment and Climate Change Canada, Mount Pearl, NL, Canada. ¹³⁵Animal Demography and Ecology Unit (GEDA), IMEDEA (CSIC-UIB), Esporles, Spain. ¹³⁶Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy. ¹³⁷Istituto di Ricerca sulle Acque - Consiglio Nazionale delle Ricerche (IRSA-CNR), Brugherio, Italy. ¹³⁸National Parks and Parks Conservation Service, Reduit, Mauritius, ¹³⁹SEO/BirdLife, Madrid, Spain. ¹⁴⁰University of Balearic Islands, Palma, Spain. ¹⁴¹Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA.¹⁴²Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa City, Japan.¹⁴³Biological Sciences, San Jose State University, San Jose, CA, USA.¹⁴⁴Nature Seychelles, Mahé, Seychelles.¹⁴⁵University of Tsukuba, Tsukuba, Japan. 146 Icelandic Institute of Natural History, Garðabær, Iceland. 147 cE3c - Centre for Ecology, Evolution and Evolutionary Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. 148 CICESE - Centro de Investigación Científica y de Educación Superior de Ensenada - Unidad La Paz, La Paz, Mexico.¹⁴⁹Halfmoon Biosciences, Denmark, Australia.¹⁵⁰National Institute of Polar Research, Tachikawa, Japan.¹⁵¹Department of Conservation, Wellington, New Zealand. ¹⁵²National Institute of Water and Atmospheric Research Ltd, Wellington, New Zealand. ¹⁵³University of Aberdeen, Cromarty, UK. ¹⁵⁴UMR ENTROPIE (IRD, UR, UNC, CNRS, IFREMER), Nouméa, New Caledonia, France. ¹⁵⁵UMR IMBE (IRD, AMU, CNRS, UAPV), Nouméa, France. ¹⁵⁶School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand. ¹⁵⁷Azabu University, Kanagawa, Japan. ¹⁵⁸Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan.¹⁵⁹Universidad Cientifica del Sur, Lima, Peru.¹⁶⁰Freira Conservation Project, Funchal, Madeira, Portugal. ¹⁶¹CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. e-mail: bethany.louise.clark@gmail.com; ana.carneiro@birdlife.org; eip69@cam.ac.uk