SEGUIMIENTO DE LAS COLONIAS REPRODUCTORAS DE PAÍÑO EUROPEO (*Hydrobates pelagicus*melitensis) EN LA ISLA DE BENIDORM (ZEPA E-121) P.N. SERRA GELADA

INFORME DE ACTIVIDADES Y RESULTADOS OBTENIDOS EN 2021.

Ana Sanz Aguilar, Andreu Rotger, Raül Ramos, Teresa Militao,
Enrique Marco, José Luis Linares, Carles Grau, Juan José Mascarell,
Jorge Hernández, Alejandro Izquierdo, Daniel Gilabert, Joan
Segovia, José Santamaría.

INDICE

<u>1.</u>	EL PAINO EUROPEO (HYDROBATES PELAGICUS)
<u>2.</u>	MARCO DE ESTUDIO
<u>3.</u>	METODOLOGÍA APLICADA8
<u>4.</u>	ANILLAMIENTOS Y RECAPTURAS EN 202114
<u>5.</u>	RECLUTAS
<u>6.</u>	DEPREDACIÓN POR GAVIOTAS PATIAMARILLAS
<u>7.</u>	FECHAS DE PUESTA
<u>8.</u>	OCUPACIÓN DE CAJAS NIDO22
<u>9.</u>	PARÁMETROS REPRODUCTORES23
<u>10.</u>	SEGUIMIENTO POR GEOLOCALIZADORES
<u>11.</u>	SEGUIMIENTO EN MITJANA Y TABARCA33
<u>12.</u>	RECUPERACIÓN DE JÓVENES DESORIENTADOS36
<u>13.</u>	DIVULGACIÓN40
<u>14.</u>	PUBLICACIONES CIENTÍFICAS (1989-2021)42
<u>15.</u>	CONTRIBUCIONES A CONGRESOS
<u>16.</u>	BIBLIOGRAFÍA53
<u>17.</u>	AGRADECIMIENTOS56

1. El paíño europeo (Hydrobates pelagicus)

Identificación

Es la más pequeña de las aves marinas europeas. Tiene un tamaño medio de 14-18 cm y un peso medio de 28 gramos. Su plumaje es negro con una mancha blanca en el obispillo y franjas blancas en la cara inferior de las alas. Sus ojos, pico y patas son oscuros. Destacan sus grandes narinas. Ambos sexos son muy poco dimórficos aunque las hembras presentan un tamaño ligeramente superior. La subespecie atlántica es de menor tamaño que la mediterránea. Vuelan muy próximos a la superficie del mar con planeos y rápidos aleteos. La especie presenta un fuerte olor.

En el período reproductivo ambos sexos emiten múltiples y constantes sonidos. Existen diferencias en las vocalizaciones de la subespecie atlántica y mediterránea.

Foto 1. Paíño europeo, Hydrobates pelagicus melitensis

Estatus de conservación y amenazas

Categoría global IUCN (2012): Preocupación Menor LC.

Categoría IUCN para España (2004): Vulnerable VU.

Catálogo Nacional de Especies Amenazadas: "De interés especial".

Comunidad Valenciana: Vulnerable (Decreto 32/2004, 27 de febrero de 2004)

Las principales amenazas de la especie engloban la modificación/destrucción de sus hábitats, la introducción de especies exóticas, los depredadores, la contaminación y el cambio climático. Las molestias y parásitos pueden afectar negativamente a algunas de sus poblaciones.

Distribución

La subespecie *pelagicus* cría principalmente en islotes del cantábrico y Canarias. En invierno la subespecie atlántica se desplaza a la zona sur del continente africano. La subespecie *melitensis* con colonias de cría en islotes del levante peninsular y las islas Baleares podría ser residente en el mar mediterráneo.

Hábitat

Es una especie pelágica que sólo visita tierra durante la época reproductora. La mayoría de las colonias de cría se localizan en islas e islotes libres de ratas. Sus nidos se encuentran en zonas oscuras y generalmente poco accesibles: grietas, fisuras y cavidades. Durante la época reproductora las principales agregaciones en el mar se localizan en zonas de borde de la plataforma continental.

Movimientos

Los individuos jóvenes prospectan diferentes colonias de cría antes de comenzar a reproducirse. Hasta la fecha y los resultados presentados en el presente informe se desconocían con detalle sus movimientos migratorios y áreas de invernada. Son capaces de alimentarse a más de 300 km de la colonia.

Ecología trófica

Su dieta es variada e incluye fundamentalmente zooplancton y pequeños peces o cefalópodos, que son capturados picoteando la superficie del mar.

Biología de la reproducción

En febrero-marzo comienzan a visitar las colonias. Desde finales de abril hasta el mes de agosto se producen las puestas, concentrándose la mayoría de las puestas en mayo y junio. Ponen un único huevo de grandes dimensiones en relación a su tamaño corporal que será incubado por ambos sexos durante 40 días. El pollo es cebado por las noches por ambos progenitores y abandonará la colonia a los 60-70 días de edad. En general comienzan a reproducirse a partir de su tercer año de vida. Presenta una alta supervivencia adulta con valores que normalmente oscilan entre el 80-90% anual, pero pueden verse afectados por depredadores y/o situaciones ambientales adversas. A nivel individual, factores como la edad, experiencia reproductora y calidad del individuo influyen en su éxito reproductor y supervivencia.

Interacciones con otras especies

Como depredadores del paíño destacan los mamíferos introducidos en islas, la gaviota patiamarilla (Foto 2) y algunas especies de rapaces. Presenta diferentes tipos de

parásitos: ácaros, piojos, pulgas y garrapatas blandas. En ocasiones, otras especies de aves marinas pueden desplazarlos de sus lugares de nidificación.

Foto 2. Egagrópila de gaviota patiamarilla con restos de un paíño europeo depredado.

Patrón social y comportamiento

Generalmente se reproduce en colonias y en tierra presenta una actividad estrictamente nocturna. Es una especie monógama con gran fidelidad a su pareja y lugar de nidificación. Presenta un gran olfato que le permite el reconocimiento de otros individuos.

Para una información detallada sobre la especie consultar:

http://www.vertebradosibericos.org/aves/hydpel.html

2. Marco de estudio

Las Islotes de Benidorm (Alicante), situados en la costa oeste del mar Mediterráneo (38º 30′N, 0º 08′E), son una zona de especial protección para las aves (ZEPA) y de conservación para el paíño europeo. La isla de Benidorm tiene una superficie de 6 hectáreas y se sitúa a 3,6 kilómetros de Benidorm, uno de los principales destinos turísticos europeos. El paíño europeo se distribuye por toda la isla, pero se concentra especialmente en 2 cuevas dónde anida en grietas, bajo derrubios de rocas y en cajas-nido artificiales. La población reproductora de paíño europeo presente en la isla se ha estimado tradicionalmente entorno a las 400 parejas (Mínguez 1994), por lo que representa una de sus mayores poblaciones mediterráneas. Además, la isla de Benidorm tiene la particularidad de que las 2 colonias de paíño ubicadas en 2 cuevas pueden ser monitorizadas de forma relativamente sencilla, puesto que en una gran cantidad de nidos las aves presentes pueden ser capturadas a mano. Este es un hecho poco corriente en gran parte de las colonias de esta especie ya que en su gran mayoría anidan en lugares de muy difícil acceso y el único método de captura viable es el uso de redes. Las colonias de cría de la isla de Benidorm representan una oportunidad única para el seguimiento de la especie a largo plazo. La captura-recaptura de individuos reproductores y pollos posibilita la estimación de parámetros demográficos clave como la supervivencia, el reclutamiento o el éxito reproductor (Lebreton et al. 1992). Además, el seguimiento de nidos posibilita la obtención de estimas anuales de densidad relativa y productividad de las colonias. En las 2 colonias de paíño europeo se realiza un monitoreo a largo plazo desde 1993. El seguimiento a largo plazo de las colonias ha permitido avanzar en el conocimiento de los rasgos de vida de la especie, la dinámica local de sus poblaciones y detectar problemas de conservación (Oro et al. 2005). Uno de los principales problemas para la especie en Benidorm es la depredación que las gaviotas patiamarillas (Larus michahellis) ejercen sobre el paíño (Oro *et al.* 2005). Para solventar el problema, el año 2004 se comenzó con un programa de descaste selectivo de parejas de gaviota patiamarilla predadoras de paíño, cuya eficacia ha podido ser evaluada posteriormente (ver sección "depredación porlas gaviotas patiamarillas").

3. Metodología aplicada

Durante el año 2008, el protocolo de campo de seguimiento de las colonias reproductoras se modificó ligeramente con el fin de mantener una muestra representativa de nidos prospectados, reduciendo la carga de trabajo y eliminando del seguimiento aquellos nidos considerados confusos. Con respecto al protocolo seguido hasta la 2008, se eliminaron del seguimiento aquellos nidos en los que sus ocupantes no pueden ser capturados.

Las actividades realizadas para el seguimiento de las colonias fueron (Tabla 1):

- Recolección de datos de nidificación, éxito de eclosión, emplumamiento y reproductor. (1).
- Toma de datos individuales: anillamiento y recaptura de adultos reproductores
 (2).
- Toma de datos individuales: anillamiento de pollos (3).
- Seguimiento de las tasas de depredación de la gaviota patiamarilla sobre el paíño
 (4).
- Recuperación de individuos marcados con geolocalizadores y marcaje de nuevos individuos

Recolección de datos de nidificación, éxito de eclosión, emplumamiento y reproductor.

Durante el presente año se revisaron los nidos de paíño que constan en el cuaderno de campo para su seguimiento permanente en la cueva grande o cueva de la "Fenolla" y la cueva pequeña o de "Bombo", se revisaron cada 7 días y se anotó su contenido en el cuaderno de campo de la siguiente forma:

- Vacío (x)
- Pareja sin incubar (2A)
- Adulto sin incubar (A)

- Huevo sólo (H, además se indicó si se encontraba abandonado o parecía de la temporada anterior)
- Adulto incubando (□)
- Adulto marcado con típex incubando (Δ)
- Adulto empollando (se añadirá un punto en el interior del cuadrado)
- Adulto marcado con típex empollando (se añadirá un punto en el interior del triángulo)
- Pollo (■)
- Muerto (se añadirá el sufijo RIP al símbolo correspondiente)

Se marcaron los nuevos nidos en los que existió puesta y al menos uno de los adultos reproductores que lo ocupaban fue capturado (se trata de nidos que se llegaba a ellos con la mano).

La productividad de las colonias se estimó al final de la campaña. Para estimar el éxito de eclosión, emplumamiento y reproductor se utilizó el método Mayfield 40% (Mayfield 1961, Mayfield 1975, Johnson 1979, Hensler & Nichols 1981). El periodo medio de incubación se consideró 40 días (Davis 1957, Mínguez 1998) y el periodo medio de empollamiento, tiempo que permanece uno de los progenitores sobre el pollo tras la eclosión del huevo, 7 días (Mínguez & Oro 2003). Las estimas relativas de éxito reproductor utilizadas fueron:

- El *éxito de eclosión* (hatching success) representa el número de pollos que nacen frente al número de puestas realizadas expresado en tanto por uno.
- El éxito de emplumamiento (fledgling success) representa el número de pollos que completan su emplumamiento frente al número de pollos que nacen expresado en tanto por uno. Se consideró que un pollo había completado su emplumamiento si sobrevivió, al menos, 40 días (Davis 1957, Mínguez 1998). A

esta edad los pollos se desplazan del nido habitualmente y es más difícil su localización, además de presentar mayor supervivencia que durante sus primeros días de vida (Mínguez & Oro 2003).

 El éxito reproductor (breeding success) representa el número de pollos que completan su emplumamiento frente al número de puestas realizadas expresado en tanto por uno.

Para poder determinar las fechas de puesta con precisión es necesario un seguimiento bastante continuo durante todo el periodo de puesta, por lo que la base datos en este sentido aparece incompleta.

Toma de datos individuales: anillamiento y recaptura de adultos reproductores y pollos.

Las aves adultas se capturaron una sola vez durante la temporada de cría, al final del periodo de incubación o durante el periodo de empollamiento, para evitar molestias y deserciones (Blackmer et al. 2004). La captura se realizó durante el día, a mano, sobre los individuos que se encontraban en el nido. El primer miembro de cada pareja capturado en cada nido se marcó con pintura blanca (típex) en cabeza y cola para evitar volver a ser capturado en posteriores visitas. Las aves que abandonaron la incubación del huevo durante las primeras semanas de incubación no pudieron ser capturadas. En algunos casos, únicamente se pudo capturar uno de los miembros de la pareja, puesto que las visitas a la colonia coincidieron con sus turnos de incubación. Los pollos se capturaron a partir de los 30 días de edad.

En base a estudios previos que indicaron la escasa utilidad de la toma de medidas biométricas para determinar el sexo en esta especie, se decidió no tomar medidas a los ejemplares capturados. De esta forma se minimizó el tiempo de manipulación de las aves.

Seguimiento de las tasas de depredación de la gaviota patiamarilla sobre el paíño europeo.

La gaviota patiamarilla cría en toda la isla, los nidos se concentran principalmente en las laderas con menor pendiente pero unas cuantas parejas nidifican en los acantilados próximos a las colonias de paíño e incluso en el interior de las cuevas. Su población reproductora en los últimos años ha variado entre las 350 y las 750 parejas. Las gaviotas suelen mostrar una alta fidelidad sus los lugares de nidificación (Burger & Lesser 1980). Este hecho permitió que, mediante la búsqueda de egagrópilas en el entorno de sus nidos, se pudiera identificar las parejas especializadas en la depredación de paíños (Oro et al. 2005). Desde el año 2002 hasta la actualidad se ha realizado un protocolo de muestreo específico en el entorno de las dos cuevas y un transecto entre ambas destinado a recolectar las egagrópilas de gaviotas con restos de paíños y detectar a las parejas especialistas (ver detalles en Oro et al. 2005 y Sanz-Aguilar et al. 2009). Los primeros resultados obtenidos indicaron que una pequeña fracción de la población reproductora de gaviotas era responsable de la mayor parte de la depredación y siguiendo las recomendaciones de Oro y colaboradores se procedió a eliminar aquellas parejas consideradas especialistas (Sanz-Aguilar et al. 2009). Se trampearon y eliminaron, mediante invección con un exceso de sedantes en la yugular, 11, 18 y 13 gaviotas, en 2004, 2005 y 2006, respectivamente. Durante las temporadas 2007-2009 no se eliminaron gaviotas en el entorno de las colonias de cría de paíño europeo. En 2010 se retomó el control anual de gaviotas patiamarillas.

Con una frecuencia semanal o máxima de 15 días se inspeccionó el interior de las colonias de cría de paíño europeo, las plataformas de entrada a las cuevas y el transecto o camino existente entre ambas. Se recogieron todas las egagrópilas encontradas en bolsas de plástico y se revisó su contenido en busca de posibles anillas. Además, se indicó en las fichas de campo el número de egagrópilas encontradas que pertenecían a pollos "si

aparecían restos de plumón o toda la pluma era nueva, normalmente a partir de julio", y adultos depredados "si no se sabe la edad se asignaron a adulto"; así como el lugar de recolección (Cueva 1 "grande", Cueva 2 "pequeña", Transecto).

Se tomó nota del número de las anillas encontradas en egagrópilas.

Material necesario para el seguimiento de las colonias de paíño.

- Frontales +Pilas
- Rodilleras
- Lápiz, bolígrafos y rotuladores permanentes
- Cuadernos y fichas de campo
- Anillas metálicas
- Alicates
- Abre-anillas
- Típex
- Bolsas de plástico con cierre hermético

Durante la temporada (2019) se configuraron nuevos croquis para detallar la localización de los nidos en el interior de las colonias (Apéndice 1). Estos croquis se actualizarán con los nuevos nidos encontrados cada temporada.

Personal encargado del trabajo de campo.

El personal encargado del seguimiento de las colonias reproductoras de la isla de Benidorm durante la temporada 2019 ha sido:

- Ana Sanz Aguilar (IMEDEA, CSIC-UIB). Coordinación.
- Andreu Rotger(IMEDEA, CSIC-UIB). Seguimiento, captura-recaptura y marcaje de adultos reproductores con geolocalizadores.

- Raül Ramos (UB). Marcaje de adultos reproductores con geolocalizadores.
- Teresa Militao (UB). Marcaje de adultos reproductores con geolocalizadores.
- José Santamaría (P.N. Serra Gelada-Ifac-Puig Campana i Ponotx-Bernia i Ferrer).
 Seguimiento. Captura-Marcaje-Recaptura de pollos y adultos reproductores.
 Recuperación de geolocalizadores
- Enrique Marco Jover. (Centro de Recuperación de Fauna de Santa Faz).
 Seguimiento. Captura-Marcaje-Recaptura de pollos y adultos reproductores.
 Recuperación de geolocalizadores
- Alejandro Izquierdo (Centro de Recuperación de Fauna de Santa Faz). Control de gaviota patiamarilla. Seguimiento Tabarca
- Daniel Gilabert (P.N. Serra Gelada-Ifac-Puig Campana i Ponotx-Bernia i Ferrer).
 Patrón.
- Joan Segovia (P.N. Serra Gelada-Ifac-Puig Campana i Ponotx-Bernia i Ferrer).
 Patrón.
- Carlos Grau Martínez (Guía del P.N. Serra Gelada-Ifac-Puig Campana i Ponotx-Bernia i Ferrer). Seguimiento y divulgación.
- Juanjo Mascarell García (Guarda Rural-Guardapescas Marítimo del Ayto. de Benidorm). Recuperación y liberación de paíños juveniles. Difusión y Educación Ambiental.
- Rebeca, Toni Mulet y Edurardo Mínguez. Colaboración en el seguimiento.
- Varios estudiantes de distintas titulaciones en prácticas en el CRFSF. Colaboración en el segumiento.

4. Anillamientos y recapturas en 2021

Durante la temporada de anillamiento 2021 se capturaron en sus nidos **479 aves adultas:** 193 en la cueva grande y 162 en la cueva pequeña (Tabla 1,2).

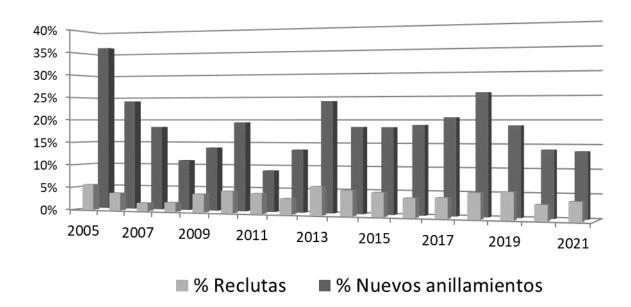
Se anillaron **141 pollos** (Tabla 1,2). Además, se recuperaron las anillas de 7 **individuos muertos** (Tabla 1,2): 5 de ellos fueron depredados (2 reproductores, 1 anillado como pollo en 2018 y un pollo de la presente temporada, y un individuo anillado en red en 2006); además se encontró un pollo de este año muerto en su nido a final de temporada y una anilla suelta que pertenecía a un reproductor de la cueva pequeña desaparecido hace años (se desconoce la causa de su muerte).

Tabla 1. Número de anillamientos, recapturas y recuperaciones de paíño en 2021.

Nº Recapturas	Nº nuevos adultos	Nº pollos	Nº indv anillados	Nº total de indv
adultos	anillados	anillados	encontrados muertos	capturados
307	48	126	2	481

Tabla 2. Códigos de anillas utilizadas para marcaje de paíño en 2020

Serie
T092142-200 (T092197 perdida)
T092209-300
T092301-400
T093001-005


Durante la presente temporada el **remanente de anillas** es: T092209-T092300 (72 anillas) T093006-100 (95 anillas) y T093101-T093200 (100 anillas). Por lo que para la próxima campaña no serían necesarias más anillas.

5. Reclutas

Se recapturaron como adultos reproductores 14 nuevos reclutas (individuos nacidos en las colonias que criaron por primera vez durante la temporada 2021). Del total de adultos reproductores capturados en nido (n=351) un 18% son individuos controlados como reproductores por primera vez este año (48 nuevos anillamientos + 14 reclutas, Figura 3). En la colonia 1 hubo 7 reclutas y en la colonia 2, 7 reclutas.

Figura 3. Relación (%) entre el número de nuevos reproductores anillados y el número de nuevos reclutas locales con el número total de reproductores capturados.

*** En 2005-2006 se produce un crecimiento importante de las colonias de reproducción tras la eliminación de gaviotas depredadoras durante la temporada de cría 2004.

6. Depredación por gaviotas patiamarillas

Durante la presente temporada la depredación de paíños por gaviotas en la isla de Benidorm ha sido baja y se ha concentrado en la cueva grande (Tablas 3-5, Figuras 4). En la cueva pequeña la depredación la depredación ha sido ínfima durante la presente temporada. En la cueva grande se llevaron a cabo medidas de control el día 10 de junio, colocando 4 cebos.

Tabla 3. Número anual (2002-2021) de parejas reproductoras de gaviota patiamarilla e individuos eliminados en la isla de Benidorm. *En 2020 se prospectaron las zonas 1,2 y 8 que en el último año de seguimiento por parte del parque representaba una media del 18% del total de gaviotas en la isla. Se asume esta relación para estimar el tamaño de población actual.

Año	Zonas 1+2	Zona 8 (Faro)	Parejas estimadas	Eliminadas
1999	24	15		
2000	29	44		
2001	30	54		
2002	26	-	460	0
2003	62	44	560	0
2004	62	16	550	11
2005	43	56	650	14
2006	79	-	670	13
2007	56	-	600	0
2008	76	47	750	0
2009	21	51	700	0
2010	72	72	755	3
2011	51	53	727	1
2012	68	44	611	0
2013	28	28	347	~2-3
2014			?	2
2015			?	7
2016			?	4
2017			?	0
2018			?	~2-3
2019			?	~8-10
2020*	66	38	578	Mínimo 1
2021			¿؟	Mínimo 1

Tabla 4. Número de egagrópilas con restos de paíño recolectadas en las diferentes áreas de estudio de la isla de Benidorm de 2000 a 2021. Notación: T= transecto.

Año	Grande	Pequeña	T2	T1	Total	Nº anillas reprod.
2000	-	-	-	-	230	8
2002	167 (70%)	36 (15%)	33 (13%)	4 (2%)	244	16
2003	151 (60.4%)	37 (14.8%)	62 (24.8%)	-	248	7
2004	84 (69.42%)	5 (4.13%)	32 (26.45%)	-	121	1
2005	29 (46,77%)	10 (16,13%)	23 (37,10%)	-	62	1
2006	71 (45,5%)	70 (44,9%)	15 (9,6%)	-	156	10
2007	43 (59.72%)	6 (8.33%)	23 (31.94%)	ı	72	1
2008	66 (78.6%)	3 (3.6%)	15 (17,9%)	1	84	0
2009	100 (68%)	32 (22%)	15 (10%)	-	147	13
2010	25 (71%)	4 (11%)	6 (17%)	ı	36	2
2011	35 (74%)	0	12 (26%)	1	47	1
2012	61 (91%)	3 (4.5%)	3 (4.5%)	1	67	0
2013	57 (90.5%)	0	6 (9.5%)	-	63	8
2014	104 (96.3%)	1 (0.9%)	3 (2.9%)	-	108	12
2015	64 (88%)	5 (7%)	4 (5%)	ı	73	10
2016	62 (95%)	1 (2%)	2 (2%)	-	65	4
2017	1 (17%)	4 (67%)	1 (17%)	-	6	0
2018	35 (66%)	13 (25%)	5 (9%)	-	53	4
2019	9 (43%)	12 (57%)	0	-	21	8
2020	46 (85%)	3 (6%)	5 (9%)	-	54	2
2021	18 (80%)	2 (10%)	2 (10%)	-	22	0

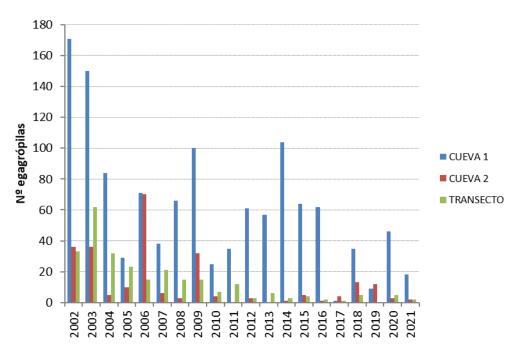


Tabla 5. Número de egagrópilas con restos de paíño recolectadas en los diferentes meses de estudio de la isla de Benidorm de 2000 a 2021.

año	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Total anual
2002	21	59	78	43	13	29	243
2003	24	74	61	46	25	18	248
2004	13	43	35	13	9	8	121
2005	5	13	22	17	5	0	62
2006	6	10	54	39	42	5	156
2007	3	5	37	13	7	-	65
2008	1	11	27	27	18	-	84
2009	11	51	61	13	11	-	147
2010	4	11	10	8	3	-	36
2011	2	8	33	2	2	-	47
2012	-	10	33	17	7	-	67
2013	0	23	37	3	0	0	63
2014	-	27	56	25	0*	-	108
2015	2	18	45	3	5	-	73
2016	1	13	22	15	14	0	65
2017	0	1	1	0	4	0	6
2018	0	10	30	10	1	2	53
2019	0	8	11	0	2	0	21
2020		21	15	14	0	4	54
2021	0	5	11	3	0	3	22
Total mensual	93	421	679	311	168	69	1741

^{*}No revisado la segunda quincena

Figura 4. Número de egagrópilas recolectadas en la isla de Benidorm en las 3 zonas prospectadas (Cueva 1=grande, Cueva 2= pequeña y Transecto 2) desde el año 2002 a 2021. La eliminación de gaviotas depredadoras de paíños se realizó de 2004 a 2006, 2010-11 y 2013-2016 y 2018-2021.

7. Fechas de puesta.

Durante 2021 la primera puesta estimada corresponde al día 08/05/2021 y la última al 4/07/2021 (Figura 5). La fecha de puesta media fue el 3/6/21 y la mediana el 5/6/21. La fecha de puesta es más tardía que la mediana de los últimos 29 años, de hecho, ha sido la segunda fecha de puesta más tardía desde que se tiene registro (Figura 6, Tabla 6).

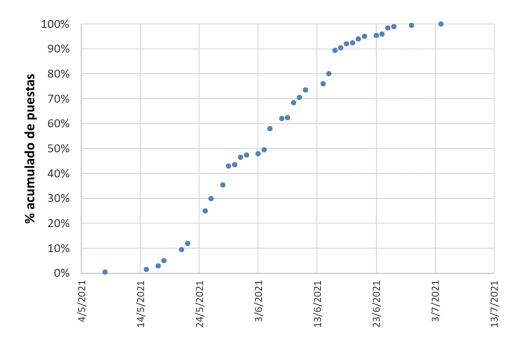
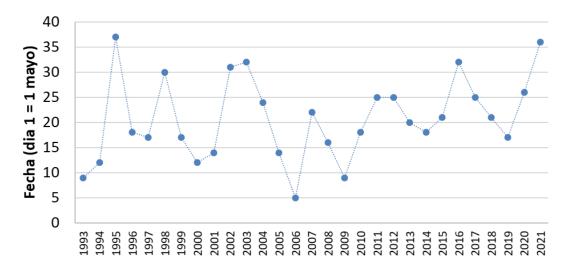



Figura 5. Distribución acumulada de las fechas de puesta de paíño en 2021.

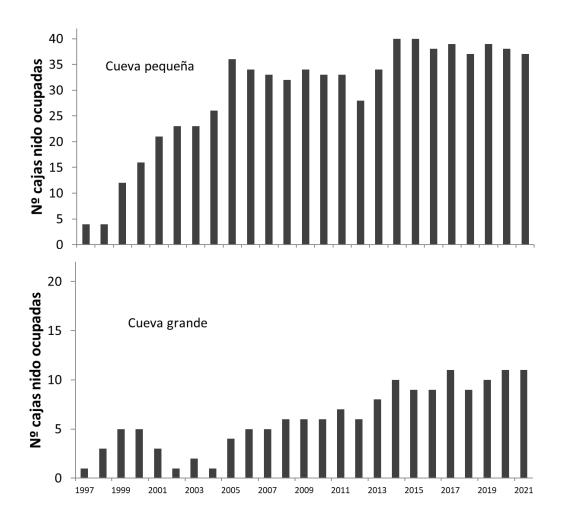
Figura 6. Evolución temporal de las fechas medianas de puesta. Se considera día 1 al 1 de mayo.

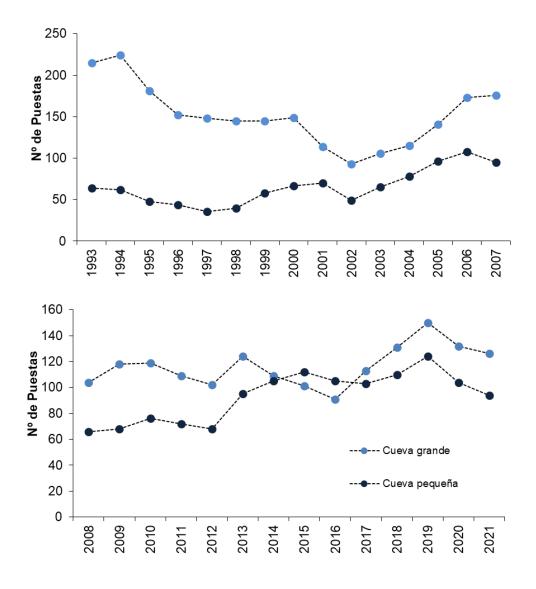
Tabla 6. Fechas medianas de puesta del paíño en la isla de Benidorm.

Año	Tamaño de muestra	Fecha (DD-MM-AA)	Precisión
1993	217	09-05-93	+/- 3 días
1994	241	12-05-94	+/- 3 días
1995	161	06-06-95	+/- 3 días
1996	175	18-05-96	+/- 7 días
1997	163	17-05-97	+/- 7 días
1998	133	30-05-98	+/- 7 días
1999	163	17-05-99	+/- 7 días
2000	140	12-05-00	+/- 7 días
2001	174	14-05-01	+/- 7 días
2002	136	31-05-02	+/- 7 días
2003	161	01-06-03	+/- 7 días
2004	188	24-05-04	+/- 7 días
2005	230	14-05-05	+/- 3 días
2006	267	05-05-06	+/- 3 días
2007	260	22-05-07	+/- 7 días
2008	157	16-05-08	+/- 7 días
2009	174	09-05-09	+/- 7 días
2010	188	18-05-10	+/- 7 días
2011	148	25-05-11	+/- 7 días
2012	158	25-05-12	+/- 7 días
2013	183	20-05-13	+/- 7 días
2014	203	18-05-14	+/- 3 días
2015	188	21-05-15	+/- 7 días
2016	182	01-06-16	+/- 3 días
2017	205	25-05-17	+/- 3 días
2018	234	21-05-18	+/- 3 días
2019	239	17-05-18	+/- 3 días
2020	221	26-05-20	+/- 7 días
2021	200	05-06-21	+/- 7 días

8. Ocupación de cajas nido.

Las tasas de ocupación de cajas nido fueron similares a las de años anteriores. En la cueva pequeña se ocuparon 37 cajas sobre un total de 41 disponibles (88%) y en la cueva grande 11 sobre 21 (52%) (Figura 7).




Figura 7. Número de cajas nido ocupadas entre 1997-2021.

9. Parámetros reproductores

El número de puestas detectadas el presente año 2021 en la isla de Benidorm ha disminuido ligeramente en ambas cuevas, un 5% en la cueva grande y un 10% en la cueva pequeña (Figura 8). Se han detectado 220 puestas (126 en la cueva grande y 94 en la cueva pequeña).

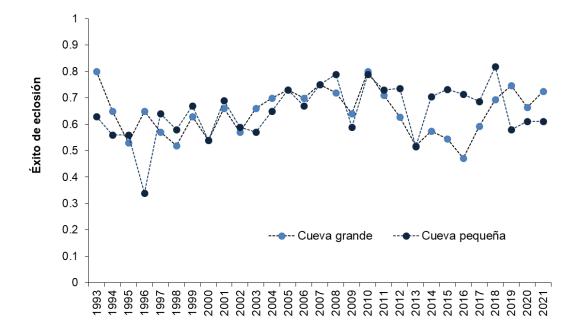
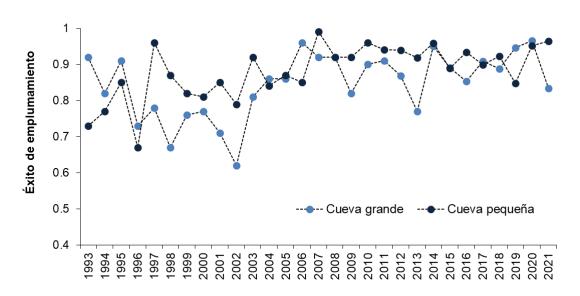


Figura 8. Evolución anual del número de puestas monitorizadas en cada una de las colonias de la isla de Benidorm de 1993 a 2021 (Los datos de 2008-2020 reflejan un protocolo mínimo, donde se eliminaron nidos del seguimiento con respecto a años anteriores 1993-2007).



El éxito de eclosión y reproductor ha sido superior en la cueva grande, pero no el de emplumamiento (Tabla 7-8, Figuras 9-11). Durante la presente temporada el éxito de eclosión, emplumamiento y reproductor han sido ligeramente superiores al promedio del periodo de estudio 1993-2021 (Promedios: Éxito de eclosión= 0.65; Éxito de emplumamiento=0.86; Éxito reproductor=0.56; Tabla 7-8).

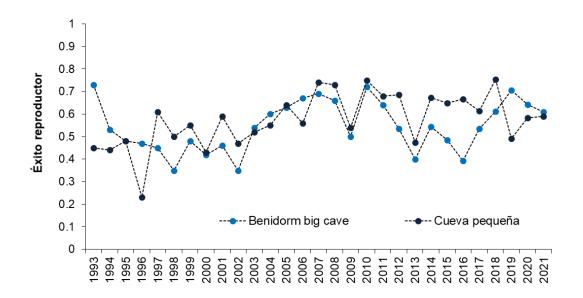


Figura 9. Estimas del éxito de eclosión del paíño en las 2 colonias de cría de la isla de Benidorm de 1993 a 2021.

Figura 10. Estimas del éxito de emplumamiento del paíño en las 2 colonias de cría de la isla de Benidorm de 1993 a 2021.

Figura 11. Estimas del éxito reproductor del paíño en las 2 colonias de cría de la isla de Benidorm de 1993 a 2021.

Tabla 7: Parámetros reproductores básicos del paíño en la Isla de Benidorm 1993- 2021.

año	Nº	éxito	éxito	éxito
aliu	puestas	eclosión	emplumamiento	reproductor
1993	279	0.76	0.89	0.67
1994	286	0.63	0.81	0.51
1995	229	0.54	0.89	0.48
1996	196	0.58	0.72	0.42
1997	184	0.59	0.81	0.48
1998	185	0.54	0.72	0.38
1999	203	0.65	0.78	0.50
2000	216	0.54	0.78	0.42
2001	184	0.67	0.76	0.51
2002	142	0.58	0.68	0.39
2003	171	0.63	0.85	0.53
2004	193	0.68	0.85	0.58
2005	237	0.73	0.87	0.63
2006	281	0.69	0.92	0.63
2007	271	0.75	0.95	0.71
2008	170	0.75	0.92	0.68
2009	186	0.62	0.86	0.54
2010	194	0.79	0.93	0.73
2011	181	0.72	0.92	0.66
2012	170	0.67	0.90	0.59
2013	219	0.53	0.81	0.43
2014	214	0.64	0.95	0.61
2015	213	0.64	0.89	0.57
2016	196	0.60	0.91	0.54
2017	216	0.64	0.90	0.57
2018	241	0.75	0.91	0.68
2019	274	0.67	0.91	0.61
2020	236	0.64	0.96	0.62
2021	220	0.68	0.88	0.60
Promedio		0.65	0.86	0.56

Tabla 8: Parámetros reproductores básicos en las dos colonias de cría de paíño en la isla de Benidorm 1993- 2021.

Cueva grande

		éxito	éxito	éxito
año	Nº puestas	eclosión	emplumamiento	reproductor
1993	215	0.8	0.92	0.73
1994	224	0.65	0.82	0.53
1995	181	0.53	0.91	0.48
1996	152	0.65	0.73	0.47
1997	148	0.57	0.78	0.45
1998	145	0.52	0.67	0.35
1999	145	0.63	0.76	0.48
2000	149	0.54	0.77	0.42
2001	114	0.66	0.71	0.46
2002	93	0.57	0.62	0.35
2003	106	0.66	0.81	0.54
2004	115	0.7	0.86	0.6
2005	141	0.73	0.86	0.63
2006	173	0.7	0.96	0.67
2007	176	0.75	0.92	0.69
2008	104	0.72	0.92	0.66
2009	118	0.64	0.82	0.5
2010	119	0.8	0.9	0.72
2011	109	0.71	0.91	0.64
2012	102	0.63	0.87	0.54
2013	124	0.52	0.77	0.40
2014	109	0.57	0.95	0.54
2015	101	0.54	0.89	0.49
2016	91	0.47	0.85	0.39
2017	113	0.59	0.91	0.54
2018	131	0.69	0.89	0.61
2019	150	0.75	0.95	0.71
2020	134	0.66	0.97	0.64
2021	126	0.73	0.83	0.61

Cueva pequeña

		éxito	éxito	éxito
año	Nº puestas	eclosión	emplumamiento	reproductor
1993	64	0.63	0.73	0.45
1994	62	0.56	0.77	0.44
1995	48	0.56	0.85	0.48
1996	44	0.34	0.67	0.23
1997	36	0.64	0.96	0.61
1998	40	0.58	0.87	0.5
1999	58	0.67	0.82	0.55
2000	67	0.54	0.81	0.43
2001	70	0.69	0.85	0.59
2002	49	0.59	0.79	0.47
2003	65	0.57	0.92	0.52
2004	78	0.65	0.84	0.55
2005	96	0.73	0.87	0.64
2006	108	0.67	0.85	0.56
2007	95	0.75	0.99	0.74
2008	66	0.79	0.92	0.73
2009	68	0.59	0.92	0.54
2010	76	0.79	0.96	0.75
2011	72	0.73	0.94	0.68
2012	68	0.74	0.94	0.69
2013	95	0.52	0.92	0.47
2014	105	0.70	0.96	0.67
2015	112	0.73	0.89	0.65
2016	105	0.71	0.93	0.67
2017	103	0.69	0.90	0.61
2018	110	0.82	0.92	0.75
2019	124	0.58	0.85	0.49
2020	104	0.61	0.95	0.58
2021	94	0.61	0.96	0.59

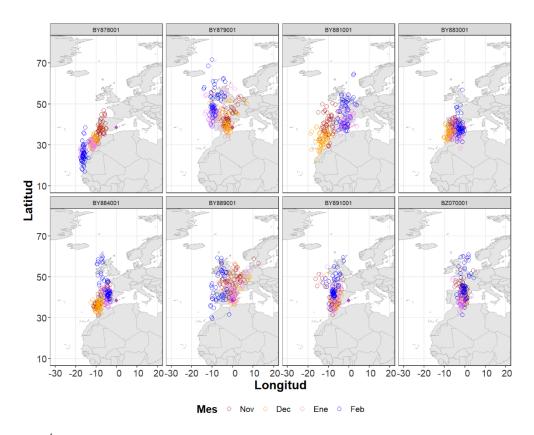
10. Seguimiento por geolocalizadores

Conocer tanto las áreas de alimentación durante la reproducción, como las rutas de migración y áreas de invernada de las aves marinas es crucial para poder evaluar los factores de amenaza y gestionar mejor los esfuerzos para la conservación. Sin embargo, debido al pequeño tamaño de esta especie, los movimientos anuales que realiza el paíño europeo siguen siendo poco conocidos (Matović et al. 2017; Martínez et al. 2019; Rotger et al 2021), ya sea durante la reproducción como durante el invierno.

Gracias a la innovación en el desarrollo de dispositivos de seguimiento cada vez más pequeños, tanto de sistema de posicionamiento global (GPS) como los dispositivos de detección de ubicación global (GLS), se ha podido rastrear en el mar especies de aves marinas mucho más pequeñas, como el paíño europeo. En 2018 ya se publicaron datos referentes a desplazamientos y áreas de alimentación en periodo reproductor para la especie obtenidos mediante GPS (Critchley et al. 2018; Oppel et al. 2018). En 2021 se publicará el artículo detallado de los movimientos de paíños reproductores de Benidorm durante el periodo de incubación 2019. Hasta la fecha, los únicos datos disponibles de los movimientos a gran escala durante el invierno mediante GLS correspondían a paíños de Malta (Lago et al. 2019). Lago et al., (2019) reveló movimientos hasta ahora desconocidos y áreas de invernada de esta especie. La mayoría de los individuos de ese estudio se quedaron en el Mediterráneo durante todo el año, siendo que algunos y las aves se desplazaron hacia el oeste o mientras otros permanecieron en el Mediterráneo central durante el invierno. Uno de los siete individuos seguidos con GLS migró hacia el Atlántico.

Benidorm es la primera colonia mediterránea de paíño europeo en el que se ha estudiado las áreas de alimentación durante la reproducción mediante emisores GPS, y la segunda en utilizar geolocalizadores de pequeño tamaño para el estudio de los movimientos no reproductivos.

En 2019, se colocó un geolocalizador en 10 individuos de la cueva pequeña (noche del 26-27 de julio de 2019). De estos 10, 9 se recuperaron durante la campaña 2020. Durante la temporada 2020, se volvieron a colocar 20 aparatos geolocalizadores en 20 nuevos reproductores al final del periodo de incubación, siguiendo el mismo método utilizado en 2019 (Foto 5). De estos, 10 animales se consiguieron recapturar durante el período reproductor de 2021, aunque solo 8 mostraron datos útiles para inferir las zonas de hibernada y el comportamiento migratorio de la especie (Fig 13).


Foto 5. Uno de los individuos anillado con el dispositivo GLS o geolocalizador en 2021

De nuevo, los resultados muestran que la mayor parte de los individuos salieron al Atlántico a pasar el invierno (Figura 13). Los resultados muestran una gran importancia de la zona del mar de Alborán durante gran parte del año. Posiblemente sea la zona donde realizan la muda post-reproductora. La mayor parte de los individuos sale al Atlántico a partir de septiembre y permanecen allí hasta marzo, aunque existe una gran

variabilidad individual. Destaca la invernada en las costas Atlánticas de la península Ibérica, incluyendo Canarias y la costa oeste de Irlanda (Figura 13).

Figura 13. Áreas de distribución de los individuos marcados con geolocalizadores a lo largo del año de 2020-2021 durante el período de invernada, más específicamente entre noviembre y febrero.

Finalmente, durante el periodo de incubación de la temporada 2021 (21/6/2021), se han equipado 10 individuos reproductores con dispositivos GLS siguiendo el mismo método utilizado en 2019 y 2020 (Tabla 9). De estos, 5 ya llevaron geolocalizador o bien durante el período migratorio 2019-2020 o bien durante el 2020-2021. La idea detrás de estas recolocaciones en animales ya seguidos una vez es poder evaluar la posible fidelidad a la zona de hibernada por parte de esta especie, así como testar el efecto del año sobre el comportamiento migratorio de los individuos.

Tabla 9. Características de cada uno de los individuos marcados con geolocalizadores en 2021.

Peso adulto	Geoloca- lizador	Anilla	Nido	Éxito reproductor 2021	Sexo	Año nacimiento	Año 1ª reproducción	Observaciones
29.9	CD236	T087417	mAA	0	M	2013	2017	
24.4	CD245	T084903	FM3	0		2016	2020	Geo en 2020, BY884
31.4	CD242	T076839	m7	1	M	2007	2014	Geo en 2019, BU458
29.7	CD241	T069313	m19	1	Н		2014	
31.0	CD243	T052876	m23	0	Н	2005	2009	Geo en 2019, BU450
29.0	CD244	T096909	m25	0	M		2019	
27.8	CD246	T076748	m27	1	M		2007	Geo en 2020, BY881
28.1	CD239	T084934	m28	1		2016	2019	Geo en 2020, BY880
29.9	CD238	T096923	m31	1	Н		2019	
32.1	CD237	T084644	m35	1		2014	2018	

11. Seguimiento en Mitjana y Tabarca

Isla Mitjana (Serra Gelada)

En 2021, Toni Mulet (GEA Ambiental) y José Santamaría (PN de la Serra Gelada), realizaron dos visitas a la colonia de la isla Mitjana (Benidorm) los días 12 y 20 de julio. Se encontraron 26 adultos incubando, 2 empollando, 5 huevos (1 abandonado + 1 eclosionado) y 22 pollos vivos y 2 pollos muertos (Tabla 10). La visita al ser más temprana que en 2020 y con una búsqueda más exhaustiva, se pudieron localizar muchos más nidos, en total 58 nidos seguros y 60 probables (ver tabla 10).

Tabla 10. Datos recogidos en 2021 del seguimiento de paíños en la isla Mitjana

DIA	ORIENTACIÓ	ZONA	NIU	ADULTS	ous	POLLS	NIUS SEGURS	TOTAL NIUS
12-07-2021		RAMPA CARTELL	NOR1		ou eclosionat		0	1
12-07-2021		BAIX SILENE 38-20	NOR2	1 covant			1	1
12-07-2021		DAIX SILENE 30-20	NOR3			1	1	1
12-07-2021	NORD		AGR1	1 covant			1	1
12-07-2021		DALT GRIETA ROJA	AGR2	1 covant			1	1
12-07-2021			AGR3			1	1	1
12-07-2021		RAMPA BAJADA PASO	DC1			1	1	1
12-07-2021		AGUJERO (dcha cartel)	DC2	1 covant			1	1
			5	1 covant			1	1
			Iz 5					
		ADOSADOS	6	1 covant			1	1
		ADOSADOS	7			1	1	1
			BLOQUES/ NIDALS	1 covant			1	1
	SUR		en la zona	2 covant	1	2 (1 rip)	5	5
		SALIENDO ADOSADOS	-	1 empollant	1	4	6	6
		ZONA PARED	2	1 covant			1	1
			3	1 covant			1	1
			BLOQUES/ NIDALS	1 covant		1	2	2
			en la zona			1	1	1
20-07-2021		1ER BLOQUE GRANDE	en la zona		1 abandonat	1	2	2
20 07 2021	OOK	BLOQUES DCHA.						
			9			1	1	1
		BADALL	12	1 covant			1	1
			11		1		1	1
		ZONA TOLL		1 escoltat			0	1
		CUEVA		6 covant		6	12	12
		BLOQUE GRANDE		3 covant		3	6	6
		ZONA N19	19	1 covant			1	1
		ZONANIS	en la zona	1 covant		1	2	2
		ZONA BADALL 2	20			1	1	1
			en la zona	1 empollant			1	1
		GRIETA ROJA		1 covant		2 (1 rip)	3	3
							58	60

Tabla 11. Datos históricos de ocupación de nidos y éxito reproductor del paíño en Mitjana (extraídos de las memorias del Plan de Acción de Aves marinas de la Comunidad Valenciana).

Colonia Isla Mitjana	1988	1999	2002	2003	2004	2005	2006	2007	2008	2009
Puestas Controladas			53	49	47	55	61		40	41
TOTAL ESTIMADO	20	25	60	50	50	60	65	81*	45	46
Éxito Reproductor										0.6
N										20

Colonia Isla Mitjana	2010	2011	2012	2013	2016	2018	2019	2020	2021
						68	45**	26	50+8
Puestas Controladas		49	34	54	58				***
TOTAL ESTIMADO	46	55	50	80					60
ER		0.73							
N		49							

^{*}Seguimiento en toda la isla mediante uso de reclamos

^{***} Se prospecta también la zona norte, no mirada en otros años

Foto 6. Adulto incubando en la isla Mitjana en 2021 (foto Toni Mulet).

^{**}Esfuerzo de seguimiento inferior al de otros años

Islote de la Galera (Tabarca)

La prospección del islote de la Galera en Tabarca se realizó el 6 de agosto por Toni Mulet. Se localizaron **3 nidos activos** (2 históricos y uno nuevo), los 3 con pollos.

Tabla 12. Datos históricos de ocupación de nidos en el islote de la Galera (Tabarca).

Año	Nidos ocupados	Nidos con Pollo	Éxito reproductor (N)
2002	15		
2003	23		
2004	14		
2005	16		
2006	17	12	
2007	17		
2008	23		
2009	14		0.5 (14)
2010	12		0.9 (9)
2011	16		0.88 (16)
2012	14		0.36 (5)
2013	11		0.72 (11)
2014	12		
2015			
2016	4		
2017	4		
2018			
2019	4		
2020	3	3	
2021	3	3	

12. Recuperación de jóvenes desorientados

Todos los años aparecen algunos ejemplares jóvenes desorientados por Benidorm. Es ahí donde la colaboración ciudadana es fundamental, ya que su captura y/o alerta, activa el protocolo de recogida, revisión y si se encuentra en aparente buen estado, tras consultar al CRF, se realiza la suelta esa misma noche.

La liberación se produce, normalmente con éxito, en alguna zona de la ciudad con cierta oscuridad y cercana al mar (cala del ti Ximo o habitualmente, bajo el Tossal de la Cala), para evitar depredación por parte de gaviotas patiamarillas y también desorientaciones secundarias. Si como suele ser normal, hay algunos transeúntes por la zona y en especial, familias con menores, se aprovecha la circunstancia para divulgar información sobre la especie, sus circunstancias, el seguimiento que se lleva a cabo, etc.

Habitualmente, la Policía Local (las secciones de Playas o Rural) o el Guarda Rural, suelen recoger directamente algunos ejemplares encontrados a través de la colaboración ciudadana (muchas veces turistas) y otros son recogidos por el Guarda Rural, tras aviso de la Policía Local, el CRF, el servicio de socorrismo o el de limpieza de playas y los ciudadanos, que lo han recogido de terceros o encontrado ellos mismos. Igualmente, se aprovecha la ocasión para divulgar información al respecto y se trasmite el agradecimiento por la inestimable colaboración prestada.

Este año se han recuperado dos ejemplares, uno de ellos recogido por personal del CRF y liberado al día siguiente en la misma Isla de Benidorm por el personal que realiza el seguimiento (1 de septiembre) y el otro por el Guarda Rural, tras aviso de la Sección Rural de la Policía Local, a quien se lo entregó un ciudadano y que se liberó esa misma noche, con la asistencia de varios adultos y un menor que disfrutaron de la experiencia (13 de septiembre).

Tabla 19. Registro histórico de entradas de paíño en el centro de recuperación de Santa Faz.

FECHA ENT	MUNICIPIO	FASE VITAL	CAUSAS DE ENTRADA
20-ago-98		Inmaduro	Traumatismo indeterminado
23-sep-98		Indeterminada	Hallazgo accidental
10-sep-99		Indeterminada	Hallazgo accidental
04-ene-01		Indeterminada	Indeterminada
26-ago-01	Benidorm	Indeterminada	Hallazgo accidental
08-oct-02	Benidorm	Indeterminada	Indeterminada
11-oct-02	Altea	Indeterminada	Indeterminada
02-sep-03	Benidorm	Cría	Indeterminada
08-dic-03	Javea/xabia	Indeterminada	Indeterminada
04-jul-04	Benidorm	Adulto	Indeterminada
19-ago-04	Guardamar del segura	Juvenil	Indeterminada
22-ago-04	Benidorm	Adulto	Hallazgo accidental
10-ago-05	Benidorm	Adulto	Hallazgo accidental
29-ago-05	Denia	Adulto	Hallazgo accidental
31-ago-06	Calpe	Inmaturo	Hallazgo accidental
09-nov-06	Benidorm	Juvenil	Hallazgo accidental
28-ago-07	Benidorm	Adulto	Trampeo anzuelo
08-sep-07	Benidorm	Juvenil	Hallazgo accidental
23-ago-08	Benidorm	Adulto	Hallazgo accidental
07-sep-08	Calpe	Adulto	Intoxicación petróleo
18-mar-09	Javea	Adulto	Hallazgo accidental
29-sep-09	Torrevieja	Adulto	Hallazgo accidental
01-may-11	Calpe	Adulto	Hallazgo accidental
23-sep-11	Torrevieja	Adulto	Atrapada en estructura
05-oct-11	Benidorm	Adulto	Hallazgo accidental
21-may-12	Campello	Adulto	Atrapada en piscifactoría
08-sep-13	Benidorm		Indeterminada
08-nov-13	Alacant		Traumatismo indeterminado
08-nov-13	Alacant		Hallazgo accidental
23-ago-14	Benidorm	Adulto	Hallazgo accidental
26-ago-14	Benissa	Subadulto	Indeterminada
26-ago-14	Benidorm	Cría	Indeterminada
29-ago-14	Benidorm	Adulto	Traumatismo indeterminado
13-ago-15	Benidorm		Hallazgo accidental
13-ago-15	Benidorm		Hallazgo accidental
22-ago-15	Villajoyosa		Desnutrición
24-ago-16	Benidorm	Adulto	Hallazgo accidental
28-ago-16	Benidorm	Cría	Hallazgo accidental
22-sep-16	Benidorm	Juvenil	Hallazgo accidental

FECHA ENT	MUNICIPIO	FASE VITAL	CAUSAS DE ENTRADA
22-ago-17	Altea	Cría	Crías
17-sep-17	San Vicente del Raspeig	Juvenil	Hallazgo accidental
14-sep-18	Torrevieja		Hallazgo accidental
19-ago-19	Benidorm	Juvenil	Hallazgo accidental
24-ago-19	Benidorm	Juvenil	Hallazgo accidental
27-ago-19	Benidorm	Juvenil	Hallazgo accidental
4-sep-19	Benidorm	Juvenil	Hallazgo accidental
7-sept-20	Benidorm	Juvenil	Hallazgo accidental
17-sept-20	Benidorm	Juvenil	Hallazgo accidental
1-sept-21	Benidorm	Juvenil	Hallazgo accidental
13-sept-21	Benidorm	Juvenil	Hallazgo accidental

Los datos históricos de entradas en Santa Faz (Tabla 19) destacan la presencia de paíños durante el invierno (diciembre, enero y marzo) en aguas alicantinas.

Tabla 20. Registro histórico de paíños desorientados recuperados y liberados en Benidorm por personal de Serra Gelada y/o Guarda Rural.

Año	Número	Observaciones
2016	6	Uno de ellos anillado en cueva grande
2017	1	
2018	1	
2019	4	
2020	2	
2021	2	

Foto 7. Joven desorientado liberado en 2021

13. Divulgación


Desde el Parc Natural de la Serra Gelada i el seu entorn litoral se realizan distintas acciones de divulgativas encaminadas a dar visibilidad a esta especie que todavía es tan desconocida, incluso para los mismos vecinos de los municipios del parque.

Se confeccionó una infografía que trata el tema de la reproducción del paíño en cajas nido en la isla de Benidorm y que se distribuyó en varias redes sociales.

Onda Benidorm

7 horas · 🚱

MEDIO AMBIENTE - Hablamos con Juanjo Mascarell de los paíños, los incendios y otras cosas.

Escúchalo aquí 👇

http://benidormtv.s3.eu-west-

1.amazonaws.com/podcast/20210915-ma-

jjmascarell.mp3

#OndaBenidorm

#MedioAmbiente

#TuEmisoraMunicipal

https://ondabenidorm.theplayroom.es/index.php/video/7786/20210915-ma-jjmascarell/

14. Publicaciones científicas (1989-2021)

- Martínez Abraín, A. and Dolz, R. 1989. Avance del primer censo exhaustivo de aves marinas nidificantes en la Comunidad Valenciana (primavera 1988). Libro Actas de la primera reunión del GIAM (Formentera). GOB: Volumen: Especial Páginas: 119-126.
- 2. Dies, J.I, Giménez, M., Martínez, A., Dolz C y Huertas, J. 1990. Localización y censo de los núcleos coloniales reproductores de aves marinas en tramos costeros e islas de la Comunidad Valenciana. Medi 1:53.
- 3. Mínguez, E. 1994. Censo, cronología de puesta y éxito reproductor del paiño común (*Hydrobates pelagicus*) en la Isla de Benidorm (Alicante E de España). Ardeola 41:3-11.
- 4. Mínguez, E. 1996. Nestling feeding strategy of the British storm-petrel *Hydrobates pelagicus* in a Mediterranean colony. Journal of Zoology 239:633-643.
- 5. Mínguez, E. 1997. Evidence of occasional re-laying in the British Storm-petrel (*Hydrobates pelagicus*). Colonial Waterbirds 20:102-104.
- 6. Minguez E. 1997. Olfactory nest recognition by British storm-petrel chicks. Animal Behaviour, 53:701-707.
- 7. Minguez E. 1997. Estimation of metabolic costs and food conversion efficiency in British storm-petrel, *Hydrobates pelagicus* chicks. Folia Zoologica, 46:94-96.
- 8. Merino S. & Minguez E. 1998. Absence of haematozoa in a breeding colony of the storm petrel *Hydrobates pelagicus*. Ibis, 140:180-181.
- 9. Mínguez, E. 1998. The costs of incubation in the British Storm-petrel: an experimental study in a single-egg layer. Journal of Avian Biology 29:183-189.
- 10. Merino S., Minguez E., & Belliure B. 1999. Ectoparasite effects on nestling European Storm-petrels. Waterbirds, 22:297-301.
- 11. de Leon, A. & Mínguez, E. 2003. Occupancy rates and nesting success of European storm-petrels breeding inside artificial nest-boxes. Scientia Marina 67:109-112.

- 12. de Leon, A., Mínguez, E. & Belliure, B. 2003. Self-odour recognition in European storm-petrel chicks. Behaviour 140:925-933.
- 13. Mínguez, E., & Oro, D. 2003. Variations in nest mortality in the European Storm Petrel Hydrobates pelagicus. Ardea 91:113-117.
- 14. Mínguez, E., D. Oro, E. De Juana, and A. Martinez-Abrain. 2003. Mediterranean seabird conservation: what can we do? Scientia Marina 67:3-6.
- 15. Arroyo B., Minguez E., Palomares L., & Pinilla J. 2004. The timing and pattern of moult of flight feathers of European Storm-petrel *Hydrobates pelagicus* in Atlantic and Mediterranean breeding areas. Ardeola, 51:365-373.
- 16. Martinez-Abrain A., Sarzo B., Villuendas E., Bartolome M. A., Minguez E., & Oro D. 2004. Unforeseen effects of ecosystem restoration on yellow-legged gulls in a small western Mediterranean island. Environmental Conservation, 31:219-224.
- 17. Mínguez, E. 2004. Paíño Europeo, Hydrobates pelagicus. Pages 55-57 in C. G. a. J. C. A. e. A. Madroño editor. Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife, Madrid.
- 18. Mínguez, E.; Sanz, A.; De León, A. & Junza, M. 2005. Control selectivo de gaviotas patiamarilla: porque no todas las gaviotas comen paíños. Quercus, 228: 81.
- 19. Oro, D., de Leon, A., Mínguez, E. & Furness, R. W., 2005. Estimating predation on breeding European storm-petrels (*Hydrobates pelagicus*) by yellow-legged gulls (*Larus michahellis*). Journal of Zoology, 265: 21-429.
- 20. Sanz, A.; Mínguez, E.; de León, A.; Martínez-Abraín, A.; Sarzo, B.; Santamaría, J. & Oro, D. 2005. Scientifically-based management solves conflict between European storm petrels and their facultative predator at minimum cost. Ecologia Mediterranea 31(1): 104-105.
- 21. Minguez E. 2006. El Paíño Europeo. Ecosistemas, 15:1-5.
- 22. Sanz-Aguilar, A., Tavecchia, G., Pradel, R., Mínguez, E. & Oro, D. 2008. The cost of reproduction and experience-dependent vital rates in small petrel. Ecology 89:3195-3203.
- 23. Sarzo, B. & Sanz, A. 2008. Elimination des Goélands leucophées spécialistes: une méthode de conservation réussie pour les Océanites tempête de Benidorm (Parc

- National de Serra Gelada, Espagne). Ateliers de travail du LIFE "Conservation des populations d'oiseaux marins des îles de Marseille", Marseille 2008, pp.51-52. 7.
- 24. Tavecchia, G., E. Mínguez, A. de Leon, M. Louzao, & D. Oro. 2008. Living close, doing differently: small-scale asynchrony in demographic parameters in two species of seabirds. Ecology 89:77-85.
- 25. Sanz-Aguilar, A., Martínez-Abraín, A., Tavecchia, G., Mínguez, E. & Oro, D. 2009. Evidence-based culling of a facultative predator: efficacy and efficiency components. Biological Conservation 142:424-431.
- 26. Sanz-Aguilar, A., Massa, B., Lo Valvo, F., Oro, D., Mínguez, E., & Tavecchia, G. 2009. Contrasting age-specific recruitment and survival at different spatial scales: a case study with the European storm petrel. Ecography 32:637-646. (*)
- 27. Sanz-Aguilar, A., Tavecchia, G., Mínguez, E., Massa, B., Lo Valvo, F., Ballesteros, G.A., Barberá, G.G., Amengual, J.F., Rodríguez, A., McMinn, M, & Oro, D. 2010. Recapture processes and biological inference in monitoring burrowing nesting seabirds. Journal of Ornithology 151:133-146.
- 28. Sanz-Aguilar A. Storm petrel demography and population dynamics at Benidorm Island. 2011. Valeiras, X., Muñoz, G., Bermejo, A., Arcos, J.M. y Paterson, A.M. (Eds.). In: Actas del 6º Congreso del GIAM y el Taller internacional sobre la Ecología de Paiños y Pardelas en el sur de Europa. Boletín del Grupo Ibérico de Aves Marinas, 34:143-146.
- 29. Sanz-Aguilar A. Removing specialist gulls: a successful conservation method for the European storm petrel. 2011. Valeiras, X., Muñoz, G., Bermejo, A., Arcos, J.M. y Paterson, A.M. (Eds.). In: Actas del 6º Congreso del GIAM y el Taller internacional sobre la Ecología de Paiños y Pardelas en el sur de Europa. Boletín del Grupo Ibérico de Aves Marinas, 34:181-184.
- 30. Bonadonna F & Sanz-Aguilar A. 2012. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition.

 Animal Behaviour 84: 509-513.

- 31. Sanz-Aguilar A, Mínguez E & Oro D. 2012. Is laying a large egg expensive? Female-biased cost of first reproduction in a petrel. The Auk 129:510-516. (*)
- 32. Libois E, Gimenez O, Oro D, Mínguez E, Pradel R & Sanz-Aguilar A. 2012. Nest boxes: A successful management tool for the conservation of an endangered seabird. Biological Conservation 155:39-43. (*)
- 33. Sin-Yeon K, Sanz-Aguilar A, Mínguez E & Oro D. 2012. Small-scale spatial variation in evolvability for life-history traits in the storm petrel. Biological Journal of the Linnaean Society 106:439-446. (*)
- 34. Sanz-Aguilar A, Libois E, Minguez E, Oro D, Pradel R & Gimenez O. 2012 Conservation of the Mediterranean Storm at Benidorm Island (Spain). Yesou P & Baccetti N Eds. In: Proceedings of the Alghero 2011 Medmaravis symposium 103-110.
- 35. Tenan S., Pradel, R. Tavecchia, G., Igual J.M., Sanz-Aguilar A., Genovart M., Oro, D., 2014. Hierarchical modelling of population growth rate from individual capture-recapture data. Methods in Ecology and Evolution 5: 606-614.
- 36. Dell'Ariccia G, Blanc L, Bonadonna F, Sanz-Aguilar A., 2015. Mediterranean storm petrels rely on nest position for homing after migration: a test with artificial nest boxes. Animal Behaviour 107: 97-104.
- 37. Ramírez F., Afán I., Tavecchia G., Catalán I.A., Oro D., Sanz-Aguilar A. 2016.

 Oceanographic drivers and mistiming processes shape breeding success in a seabird. Proceedings of the Royal Society of London B: Biological Sciences 283.

 DOI: 10.1098/rspb.2015.2287
- 38. Hernández N.; Oro D.; Sanz-Aguilar A. 2017. Environmental conditions, age, and senescence differentially influence survival and reproduction in the Storm Petrel.

 Journal of Ornithology 158:113-123 DOI: 10.1007/s10336-016-1367-x
- 39. Matovic, N., Cadiou, B., Oro, D., Sanz-Aguilar, A. 2017. Disentangling the effects of predation and oceanographic fluctuations in the mortality of two allopatric

- seabird populations Population Ecology 59: 225-238 DOI: 10.1007/s10144-017-0590-5.
- 40. Garnier R, Ramos R, Sanz-Aguilar A, Poisbleau M, Weimerskirch H, Burthe S, Tornos J, Boulinier T. 2017. Interpreting ELISA analyses from wild animal samples: some recurrent issues and solutions. Functional Ecology. 31:2255-2262 DOI:10.1111/1365-2435.12942
- 41. Tavecchia G, Oro D, Sanz-Aguilar A, Bechet A. 2017. The multidimensional value of long-term individual-based studies: more than lots of data. Avocetta 41:19-21.
- 42. Keogan K; Daunt F; Wanless S; Phillips RA; Walling CA; Agnew P; Ainley DG; Anker-Nilssen T; Ballard G; Barrett RT; Barton KJ; Bech C; Becker P; Berglund P-A; Birkhead T; Bollache L; Bond A; Bouwhuis S; Bradley R; Burr Z; Camphuysen K; Catry P; Chiaradia A; Christensen-Dalsgaard S; Cuthbert R; Dehnhard N; Descamps S; Diamond T; Divoky G; Drummond H; Dugger KM; Dunn MJ; Emmerson L; Erikstad KE; Fort J; Fraser W; Gaston A; Genovart M; Gilg O; González-Solís J; Gremillet D; Hansen J; Hanssen SA; Harris M; Hedd A; Hinke J; Igual JM; Jahncke J; Jones I; Kappes PJ; Lang J; Langset M; Lescroël A; Lorentsen SH; Lyver PO'B; Mallory M; Moe B; Montevecchi WA; Monticelli D; Mostello C; Newell M; Nicholson L; Nisbet I; Olsson O; Oro D; Pattison V; Poisbleau M; Pyk T; Quintana F; Ramos J; Ramos R; Reiertsen TK; Rodríguez C; Ryan P; Sanz-Aguilar A; Schmidt NM; Shannon P; Sittler B; Southwell C; Surman C; Svagelj WS; Trivelpiece W; Warzybok P; Watanuki Y; Weimerskirch H; Wilson PR; Wood AG; Phillimore AB; Lewis S. 2018. Global phenological insensitivity to shifting ocean temperatures among seabirds. Nature Climate Change 8:313-318
- 43. Martínez C; Roscales JL; Sanz-Aguilar A; Gobnzález-Solís J. 2019. Inferring migration of European storm petrel (Hydrobates pelagicus) from stable isotope analysis and observational field data. Ardeola 66(1):13-32.
- 44. Rodríguez A; Arcos JM; Bretagnolle V; Dias MP; HolmesND; Louzao M; Provencher; Raine AF; Ramírez F; Rodríguez B; Ronconi RA; Taylor RS; Bonnaud E; Borrelle S; Cortés V; Descamps S; Friesen VL; Genovart M; Hedd A; Hodum P;

Humphries G; Le Corre M; Lebarbenchon C; Martin R; Melvin EF; Montevecchi WA; Pinet P; Pollet IL; Ramos R; Russell JC; Ryan PG; Sanz-Aguilar A; Spatz D; Travers M; Votier S; Wanless R; Woehler E; Chiaradia A. 2019. Future Directions in Conservation Research on Petrels and Shearwaters. Frontiers in Marine Science 6:94

- 45. Sanz-Aguilar, A., Zuberogoitia, I., Sallent, Á., Picorelli, V., Navedo, J.G., Garaita, R. 2019. Paíño europeo Hydrobates pelagicus. En: Enciclopedia Virtual de los Vertebrados Españoles. López, P., Martín, J., González-Solís, J. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/
- 46. Sanz-Aguilar, A.; Payo-Payo, A.; Rotger, A.; Yousfi, L.; Moutailler, S.; Beck, C.; Dumarest, M.; Igual, J.M.; Miranda, M.A.; Viñas Torres, M.; Picorelli, V.; Gamble, A.; Boulinier, T. 2020. Infestation of small seabirds by Ornithodoros maritimus ticks: effects on chick body condition, reproduction and associated infectious agents. Ticks and Tick-borne Diseases 11:101281 https://doi.org/10.1016/j.ttbdis.2019.101281
- 47. Rotger, A.; Sola, A.; Tavecchia, G.; Sanz-Aguilar, A. 2021. Foraging far from home: Gps-tracking of Mediterranean Storm-Petrels *Hydrobates pelagicus melitensis* reveals long-distance foraging movements. Ardeola, in press.

15. Contribuciones a Congresos

1. 7th World Seabird Twitter Conference.

2021.

Militão, T., Sanz-Aguilar, A., Rotger, A., Ramos, R. 2021. Non-breeding distribution and at-sea activity patterns of the smallest European seabird, the European storm petrel (Hydrobates pelagicus). 7th World Seabird Twitter Conference. 4-6 May 2021.

2. 6th World Seabird Twitter Conference.

2020.

Rotger, A. GPS tracking of breeding Mediterranean Storm Petrels (Hydrobates pelagicus melitensis) reveals long-distance foraging movements. 4-6th May 2020.

3. XXIV Congreso Español y VII Ibérico de Ornitología.

Cádiz, 2020.

Poster: Sola Galindo, A.; Rotger, A.; Tavecchia, G.; Sanz-Aguilar, A. 2019. Descubriendo las áreas de alimentación del paíño mediterráneo.

4. Universidad de Valencia.

Valencia, 2019.

Comunicación invitada: Sanz-Aguilar A. Seabird survival

5. II Joint Congress on Evolutionary Biology.

Montpellier, Francia. 2018.

Comunicación: Boulinier T; Ramos R; Garnier R; Sanz-Aguilar A; Burthe S; Poisibleau M; Weimerskirch H; Gamble A; Quillfeldt P; González-Solís J; Staszewski V; Granroth-Wilding H; Jaeger A; Delord K; Barbraud C; Cunningham E; McCoy KD; Daunt F; Tveraa T; Tornos J. Evolution of a neglected trait between life history and immunology: maternal antibody persistence.

6. 14th International Seabird Group Conference.

Liverpool, UK. 2018.

Comunicación invitada: Sanz-Aguilar A. Seabird survival

7. XX Congreso de Anillamiento Científico de Aves.

Murcia, 2017.

Comunicación invitada: Sanz-Aguilar A. Estudios de captura-recaptura aplicados al anillamiento.

8. Jornada de seguimiento del paíño en el Mediterráneo.

Benidorm, España. 2017.

Comunicaciones de Eduardo Mínguez, Ana Sanz Aguilar y Alejandro Izquierdo.

9. 2nd World Seabird Conference.

Cape Town, South Africa. 2015.

Comunicación: Boulinier T, Ramos R, Sanz-Aguilar A, Burthe S, Poisbleau M, Weimerskirch H, Quillfeldt P, Gonzalez-Solis J, Jaeger A, Delord K, Cunningham E, Daunt F, Tveraa T, Staszewski V, Tornos J, Garnier R, "Temporal persistence of antibodies in shearwaters, petrels, albatrosses, kittiwakes, shags, auks and penguins: a comparative approach of a neglected life history trait."

10. 2nd World Seabird Conference.

Cape Town, South Africa. 2015

Comunicación: Dell'Ariccia G, Blanc L, Bonadonna F, Sanz-Aguilar A. "Mediterranean storm petrels rely on nest position for homing after migration: a test with artificial nest boxes".

11. Long-term studies as a tool for wildlife conservation.

Benidorm, Spain. 25-06- 2012 al 2-06- 2012. Ciudadanos por la Ciencia & CEFE-CNRS .

Comunicación: Sanz-Aguilar A, "20 years guarding storm petrels in Benidorm Island".

12. 13th MEDMARAVIS Pan-Mediterranean Symposium.

Alghero, Italy. 14-10-2011 al 17-10-2011. MEDMARAVIS and Porto Conte Regional Park. In association with PIM Mediterranean Small Islands Initiative

Comunicación: Sanz-Aguilar Ana, Libois Emmy, Minguez Eduardo, Oro Daniel, Pradel Roger, Olivier Gimenez. Nest boxes: a successful management tool for the conservation of the Mediterranean storm petrel at Benidorm Island (Spain).

13. ICCB 2011.

Aukland, New Zealand. 5-12-2011 al 9-12-2011. Society for Conservation Biology. *Comunicación:* Sanz-Aguilar Ana, Libois Emmy, Minguez Eduardo, Oro Daniel, Pradel Roger, Olivier Gimenez. Nest boxes: a successful management tool for the conservation of the Mediterranean storm petrel at Benidorm Island (Spain).

14. IV Congrés d'Ornitologia de les Balears.

Menorca, 18-01-2008 al 20-01-2008. Societat Ornitològica de Menoría (SOM). *Comunicación:* Sanz-Aguilar A. "Pequeños y nocturnos: métodos de Estudio del Marineret, *Hydrobates pelagicus*".

15. Jornadas Técnicas: Aves Marinas, Islas y Cambio Global en el Mediterráneo. Una Estrategia para la Conservación.

Murcia, 29-11-2007 al 30-11-2007. Región de Murcia, ANSE, Naturama, CEMACAM.

Comunicación: Sanz-Aguilar A. "Cambios poblacionales en aves marinas por el cambio global".

16. Taller Internacional sobre Ecología de paiños y pardelas en el sur de Europa

Cariño (A Coruña), 16-11-2007 al 18-11-2007. Sociedade Galega de Ornitología (SGO), Sociedade Galega de Historia Natural (SGHN) y Grupo Ibérico de Aves Marinas (GIAM-SEO/Birdlife).

Comunicación: Sanz-Aguilar A. "El Paíño Europeo, situación general, biología reproductora, tendencias poblacionales, amenazas y medidas de conservación".

17. 31st Wbs. Annual meeting of the Waterbird Society.

Barcelona, 30-10-2007 al 3-11-2007. Waterbird Society- Universidad de Barcelona- Seo-BirdLife.

Comunicación: Sanz-Aguilar A. "Age and experience dependent tradeoff between survival and reproduction in a long lived bird".

18. El Escateret en el Parque Natural de Serra Gelada. Labores para su conservación

Benidorm (Alicante), 16-10-2007. Parque Natural de la Serra Gelada.

Comunicación: Sanz-Aguilar, A. Resultados del seguimiento a largo plazo de las colonias de la Illa de Benidorm ¿son suficientes 15 años?"

Comunicación: Perez I. "Distribución en la Comunidad Valenciana"

Comunicación: Minués E. "Que hacemos en el Parque por el escateret"

Comunicación: Santamaría J. "La colaboración con el estudio del paíño".

19. Talleres de Ecología 2007.

Elche (Alicante), 14-09-2007. Área de Ecología, Departamento de Biología Aplicada, UMH.

Comunicación: Sanz-Aguilar A. "Experience-dependent tradeoff between survival and reproduction in a long lived bird".

20. XVIII Congreso Español y III Ibérico de Ornitología

Elche (Alicante), 12-10-2006 al 14-10-2006. SEO/BirdLife.

Poster: Sanz-Aguilar, A.; Mínguez, E.; Noguera, J.M.; Perez-García, J.M.; Santamaría, J. & Oro, D.-"Patrones de reclutamiento y edad de la primera reproducción del Paíño europeo (Hydrobates pelagicus) en la Isla de Benidorm". Poster: Sanz-Aguilar, A.; de León, A; Martínez-Abraín, A.; Mínguez, E.; Noguera, J.M.; Perez-García, J.M.; Santamaría, J.; Sarzo, B. & Oro, D.- "Eliminación selectiva de gaviotas predadoras de Paíño europeo (Hydrobates pelagicus) en la Isla de Benidorm, implicaciones para su conservación"

21. Talleres de Ecología 2006

Elche (Alicante), 2006. Área de Ecología, Departamento de Biología Aplicada, UMH

Comunicación: Sanz-Aguilar A. "Patrones de reclutamiento y edad de la primera reproducción del Paíño europeo en la Isla de Benidorm".

22. Seminarios de Ecología 2006. Murcia, 2006. Departamento de Ecología e Hidrología, Universidad de Murcia.

Comunicación: Sanz-Aguilar A. "Patrones de reclutamiento y edad de la primera reproducción del Paíño europeo en la Isla de Benidorm".

23. Il reunión del GIAM. Formentera, 1989.

Comunicación y publicación en actas: Martínez Abraín, A. y Dolz, R. "Primer Censo de Aves Marinas nidificantes en el litoral e islas de la Comunidad Valenciana".

24. MEDMARAVIS. Calviá, 1989.

Poster y publicación en actas: Martínez Abraín, A. "Gestión de las Zonas Insulares Valencianas para la protección de las colonias de paiño común Hydrobates pelagicus".

16. Bibliografía

Blackmer, A. L., J. T. Ackerman, and G. A. Nevitt. 2004. Effects of investigator disturbance on hatching success and nest-site fidelity in a long-lived seabird, Leach's storm-petrel. Biological Conservation 116:141-148.

Bonadonna F & Sanz-Aguilar A. 2012. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Animal Behaviour 84: 509-513.

Burger J., Lesser, F., 1980. Nest site selection in an expanding population of Herring Gulls. Journal of Field Ornithology 51, 270–280.

Critchley, E.J., Grecian, W.J., Kane, A., Jessopp, M.J., and Quinn, J.L. 2018. Marine protected areas show low overlap with projected distributions of seabird populations in Britain and Ireland. Biol. Conserv. 224: 309–317.

Davis, P. 1957. The breeding of the Storm Petrel. British Birds 85-101-371-84.

Dell'Ariccia, G., Célérier, A., Gabirot, M., Palmas, P., Massa, B., Bonadonna, F. 2014. Olfactory foraging in temperate waters: sensitivity to dimethylsulphide of shearwaters in the Atlantic Ocean and Mediterranean Sea. Journal of Experimental Biology 217: 1701-1709.

Dell'Ariccia G, Blanc L, Bonadonna F, Sanz-Aguilar A., 2015. Mediterranean storm petrels rely on nest position for homing after migration: a test with artificial nest boxes. Animal Behaviour 107: 97-104.

Hensler, G. L., and J. D. Nichols. 1981. The Mayfield Method of Estimating Nesting Success - A Model, Estimators and Simulation Results. Wilson Bulletin 93:42-53.

Johnson, D. H. 1979. Estimating Nest Success - Mayfield Method and an alternative. Auk 96:651-661.

Lago, P., Austad, M., and Metzger, B. 2019. Partial migration in the Mediterranean Storm Petrel Hydrobates pelagicus melitensis. Mar. Ornithol. 47: 105–113.

storm-petrels. Waterbirds 22: 297-301.

Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals - A unified approach with casestudies. Ecological Monographs 62:67-118.

Martínez, C., Roscales, J.L., Sanz-Aguilar, A., and González-Solís, J. 2019. Inferring the Wintering Distribution of the Mediterranean Populations of European Storm-Petrels Hydrobates pelagicus melitensis from Stable Isotope Analysis and Observational Field Data. Ardeola 66(1): 13–33.

Matovic, N., Cadiou, B., Oro, D., Sanz-Aguilar, A. 2017. Disentangling the effects of predation and oceanographic fluctuations in the mortality of two allopatric seabird populations Population Ecology 59: 225-238 DOI: 10.1007/s10144-017-0590-5.

Mayfield, H. F. 1961. Nesting success calculated from exposure. Wilson Bulletin 73:255-261.

Mayfield, H. F. 1975. Suggestion for calculating nest success. Wilson Bulletin 87:456-466. Merino, S., Mínguez, E., Belliure, B., 1999. Ectoparasite effects on nestling European

Mínguez, E. 1994. Censo, cronología de puesta y éxito reproductor del paiño común (*Hydrobates pelagicus*) en la Isla de Benidorm (Alicante E de España). Ardeola 41:3-11.

Mínguez, E. 1998. The costs of incubation in the British Storm-petrel: an experimental study in a single-egg layer. Journal of Avian Biology 29:183-189.

Mínguez, E., and D. Oro. 2003. Variations in nest mortality in the European Storm Petrel *Hydrobates pelagicus*. Ardea 91:113-117.

Nevitt, G. A., Bonadonna, F.2005. Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biology Letters 1:303-305.

Oppel, S., Bolton, M., Carneiro, A.P., Dias, M.P., Green, J.A., Masello, J.F., Phillips, R.A., Owen, E., Quillfeldt, P., and Beard, A. 2018. Spatial scales of marine conservation management for breeding seabirds. Marine Policy 98: 37–46.

Oro, D., A. de Leon, E. Mínguez, and R. W. Furness. 2005. Estimating predation on breeding European storm-petrels (*Hydrobates pelagicus*) by yellow-legged gulls (Larus Michahellis). Journal of Zoology 265:421-429.

Rotger, A.; Sola, A.; Tavecchia, G.; Sanz-Aguilar, A. 2021. Foraging far from home: Gpstracking of Mediterranean Storm-Petrels Hydrobates pelagicus melitensis reveals long-distance foraging movements. Ardeola, in press.

Sanz-Aguilar, A., Martínez-Abraín, A., Tavecchia, G., Mínguez, E. & Oro, D. 2009b. Evidence-based culling of a facultative predator: efficacy and efficiency components. Biological Conservation 142:424-431.

Sanz-Aguilar, A., Zuberogoitia, I., Sallent, Á., Picorelli, V., Navedo, J.G., Garaita, R. (2019). Paíño europeo – Hydrobates pelagicus. En: Enciclopedia Virtual de los Vertebrados Españoles. López, P., Martín, J., González-Solís, J. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

Sanz-Aguilar, A., Payo-Payo, A., Rotger, A., Yousfi, L., Moutailler, S., Beck, C., Dumarest, M., Igual, J.M., Miranda, M.A., Viñas Torres, M., Picorelli, V., Gamble, A., Boulinier, T. 2019b. Infestation of small seabirds by Ornithodoros maritimus ticks: effects on chick body condition, reproduction and associated infectious agents. Ticks and Tick-borne Diseases https://doi.org/10.1016/j.ttbdis.2019.101281

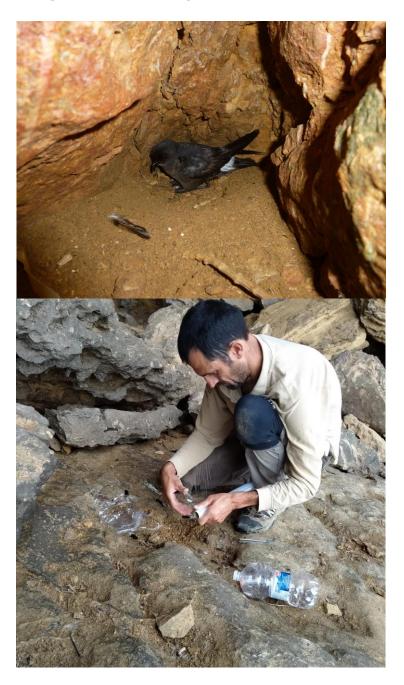
Soanes, L., Bright, J., Carter, D., Dias, M., Fleming, T., Gumbs, K., Hughes, G., Mukhida, F., and Green, J. 2016. Important foraging areas of seabirds from Anguilla, Caribbean: implications for marine spatial planning. Mar. Policy 70: 85–92.

Wilson, R.P., Pütz, K., Peters, G., Culik, B., Scolaro, J.A., Charrassin, J.-B., and Ropert-Coudert, Y. 1997. Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl. Soc. Bull. 1973-2006 25(1): 101–106.

17. Agradecimientos

Este trabajo ha sido posible gracias a la financiación obtenida por varios proyectos:

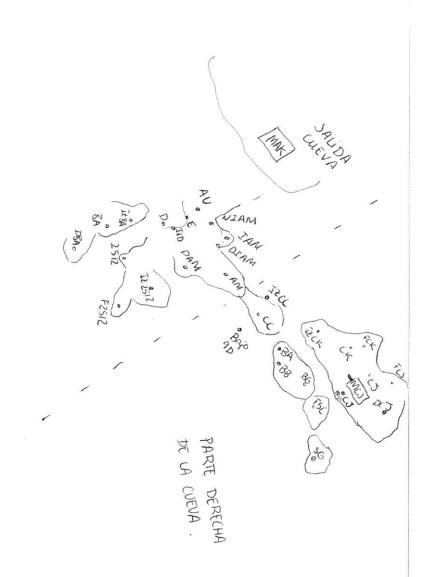
 Ayudas Ramón y Cajal a Ana Sanz Aguilar y Raül Ramos, financiadas por el Ministerio de Innovación y Universidades, la Agencia Estatal de Investigación y el Fondo Social Europeo (RYC-2017- 22796/ RYC-2017- 22055).


Fundación Balearia nos facilitó los desplazamientos entre Baleares y la península.

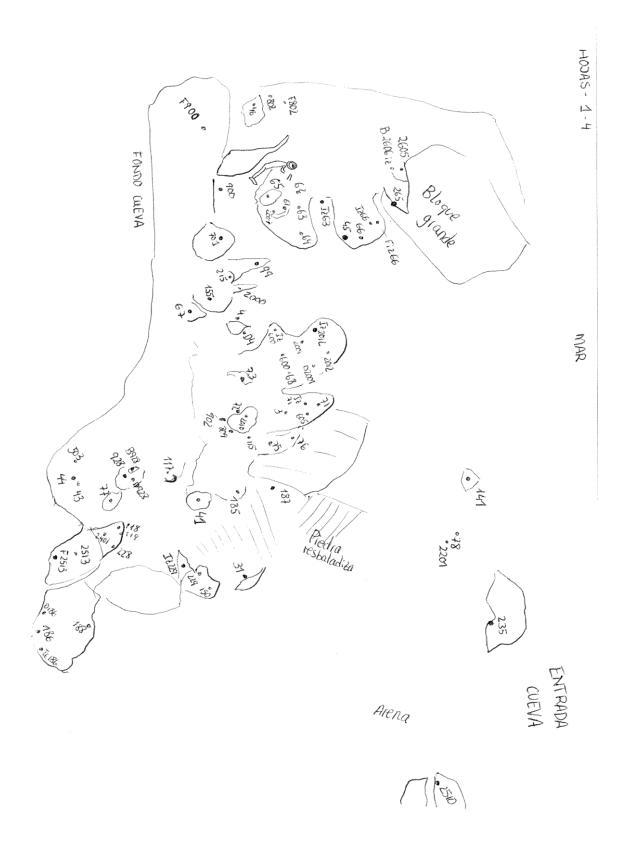
ANEXO 1

Imágenes de la campaña 2021

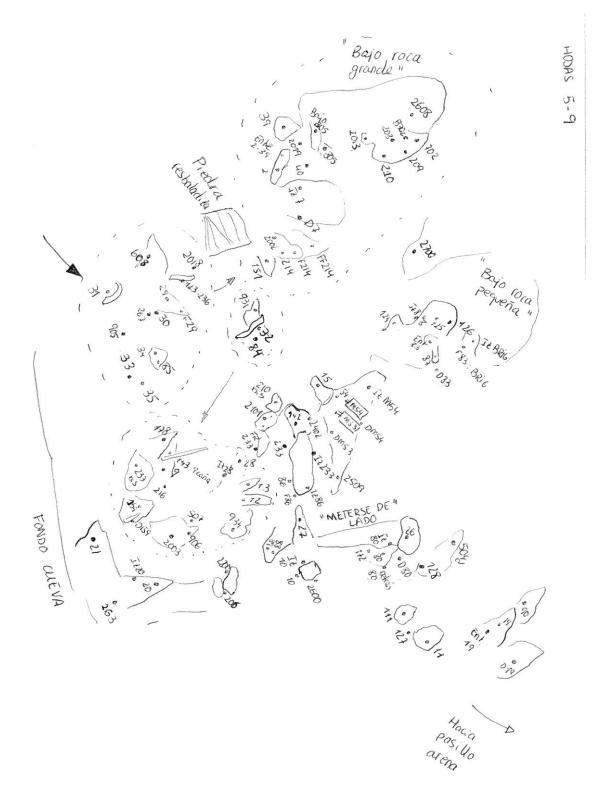
ANEXO 2



Croquis de las colonias



CUEVA PEQUENA



Isla Mitjana

